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String Field Theory

» String field theory provides a nonperturbative formulation of string theory.

» It should reproduce the scattering amplitudes calculated by the

first-quantized formalism.

>

worldsheet
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In this talk

| would like to explain that

» Several bosonic string field theories are proved to reproduce the

first-quantized results.

» So far, there are no such superstirng field theories. This is because there is

still something not well-understood in the first-quantized formalism.

» The light-cone gauge superstring field theory can be proved to reproduce the
first-quantized results by considering the dimensional regularization of the

theory.

In collaboration with Y. Baba and K. Murakami
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§1 Bosonic SFT vs. 1-st quantization  §1-1 Witten's SFT

§1-1 Witten's SFT

Witten's cubic SFT (bosonic)
1 g
S:/ {Q\IJQ\I/Jrg\I%(\IJ*\I/)}

> String field: U [X* (0),b(0),c(0)]



§1 Bosonic SFT vs. 1-st quantization  §1-1 Witten's SFT

Perturbation theory of bosonic strings

Taking the Siegel gauge bp¥ = 0,

» gauge fixed action
]‘ / ! g ! ! /
S = / |:2\I/ C()L(]\I/ + 5\:[/ . (\I/ x U )

» Feynman rule

t
B S S
propagator f
o0
dt bo=Jb
%(:) = b() fooo (1t87tLD fO

vertex \/

hed



§1 Bosonic SFT vs. 1-st quantization  §1-1 Witten's SFT

Feynman diagram

Four point tree amplitude

General amplitudes are expressed in the form

Av= > /Hdta<V1~--VN1;[/Cab>

worldsheet o worldsheet

with t,: Feynman parameters
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§1 Bosonic SFT vs. 1-st quantization  §1-1 Witten's SFT

Amplitudes from the first-quantized formalism

dgmndX*]

o1
= ViV,
Z /rep ><Wey| ! N

worldsheet

= > / [ dma [dx*dbdc] e+ Vy - Viy [ Ba

worldsheet e

space of . .
p SPACE OLomn _moduli space of worldsheet Riemann surface
rep.x Weyl

» m,: coordinates of the moduli space CETD

» B,: antighost insertions to soak up the zero modes:

agrep.
Ba — d2 mn pmn
/ V9 om

(63
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§1 Bosonic SFT vs. 1-st quantization  §1-1 Witten's SFT

Witten's SFT vs. 1-st quantization

1-st /Hdma [dX“dbdc}e*Ig-f-Vl -~~VNHBa

g
o

SFT /gdta<\/1---VNl;[/Cab>

» The Feynman parameters t,0f SFT parametrize the moduli space of Riemann

surfaces. (.....,Zwiebach 1991)

. b= [ dPo gl
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§1 Bosonic SFT vs. 1-st quantization  §1-2 Light-cone gauge SFT

§1-2 Light-cone gauge SFT (closed)

9 L+L g
S = /l ( 0 ao >q>+3q>-(q>*q>)

> string field:® [T, a, X? (o)}

0 <o < 2m|af
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§1 Bosonic SFT vs. 1-st quantization

Perturbation theory

Feynmn rule

»> propagator

> vertex

§1-2 Light-cone gauge SFT

/63



§1 Bosonic SFT vs. 1-st quantization  §1-2 Light-cone gauge SFT

Feynman diagram

W Vi

— /de9

Vo

» The worldsheet theory is with ¢ = 24, and we have an anomaly factor I".

Ay = Z /HdtI <V'1LC L. V£C>Xi e_l"
s

worldsheet
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§1 Bosonic SFT vs. 1-st quantization  §1-2 Light-cone gauge SFT

Light-cone gauge SFT vs. 1-st quantization

/Hdtz L VEOYY e <—>/Hdma<

» {7's cover the moduli space once.

» The integrands are also equal.

i)
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§1 Bosonic SFT vs. 1-st quantization  §1-2 Light-cone gauge SFT

The integrand

. XH bc
[ dtz (vie - v;cf“ e [[dma <v1 . VNHBQ>

T

Xi,b,c
e~ <cc(z1 et (zn HBI>

) o
<V1LC o V]I\;C> -~ <V1DDF o V]l\?DF>

,b,c
<V1LC L VZ{[JC>X’ e T — <(CEVDDF)1 . (CEVDDF)N H BI>

T
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§1 Bosonic SFT vs. 1-st quantization  §1-3 Remarks

§1-3 Remarks

» Zwiebach's closed string field theory also reproduces the 1-st quantized

results.

» The light-cone gauge open string field theory has not been proved to

reproduce the 1-st quantized results.

» o = p" HIKKO and the covariantized light-cone SFT (closed) reproduce the

results of the light-cone gauge SFT and therefore the 1-st quantized results.
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§2 Super SFT vs. 1-st quantization

§2 Super SFT vs. 1-st quantization

§2-1 Witten's SFT for superstrings and perturbation theory
§2-2 1-st quantized superstring theory

§2-3 Super SFT vs. 1-st quantization

17 /63



§2 Super SFT vs. 1-st quantization  §2-1 Witten's SFT for superstrings

§2-1 Witten's SFT for superstrings
Witten's cubic SFT for superstrings
- 1 g s .
S = / [2\I/Q\I' + 5\11 - X <§> (T \IJ)} + fermions

» X (0): picture changing operator

G (o). worldsheet supercharge

G = ¢"i0X,, + ghost part
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§2 Super SFT vs. 1-st quantization  §2-1 Witten's SFT for superstrings

Superstring perturbation theory

Taking the Siegel gauge bp¥ =0

» gauge fixed action

1
g — / [2\P’00L0\If’ +9y . x

3

» Feynman rule

(5w

propagator

00
J5Tdt
7o =bo fo dte~tro 0
vertex
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§2 Super SFT vs. 1-st quantization  §2-1 Witten's SFT for superstrings

Superstring perturbation theory

Four point tree amplitude

A= Ooo dt <V1 Vi X (21 (1) X (22 (1)) /b> + other channels
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§2 Super SFT vs. 1-st quantization  §2-1 Witten's SFT for superstrings

Superstring perturbation theory

Four point tree amplitude

A= /000 dt <V1 e VaX (21 (1) X (22 (1) /b> + other channels

The integral diverges because z; (0) = 22 (0) and

X (21) X (22)~(z1 — 22) "2 X regular operator (21 ~ 22)

20/63



§2 Super SFT vs. 1-st quantization  §2-1 Witten's SFT for superstrings

Witten's SFT for superstrings

» The amplitudes can be given in the form

» The integral diverges when the picture changing operators collide. (contact
term problem)
» Various ways to avoid the contact term problems are proposed. (modified

cubic, Berkovits, ...)
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

§2-2 The 1-st quantized superstring theory

» Although they are divergent, the amplitudes from Witten's superstring field

theory are of the form

» The 1-st quantized formalism yields the same form of the amplitudes.
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory
Amplitudes from the first-quantized formalism

d dxadXHdipH
A = Z / [gmn Xa ’¢]67[V1"'VN
superrep. X superWeyl

worldsheet

> / [ dma [ ] dno [dX*dypHdbdedBdn)

worldsheet o

ety VNHBQH(S(BG

space of gin,xa
superrep. xsuperWeyl

=supermoduli space of superRiemann surface

> Mmg.7.: coordinates of the supermoduli space @D

» B,,0(B,): antighost insertions to soak up the zero modes

9 tgrep,
b= [P —p
Mo
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

Picture changing operator

oter

If one takes 7, so that = 62 (2 — 2,) and integrating over 7, we get

A > / I dma H dny [dX*dyp* dbdedBdr)
worldsheet a
e etV Uy [[ B T 0 (80)
> / [ dma [dx"dy* dbdcdBdy]

worldsheet a
1V [ Ba [T (20)
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory
Picture changing operators

. Orep.
» Taking d’éfndl =62 (2 — 2,) we get the amplitudes with picture changing

operators inserted.

X (25(m))

J T, dma

» We can freely take z, as long as 8%(, - (0=1,---29 — 2+ N) span the

space transverse to the symmetry orbits. It is a “gauge choice”.

superrep. x superWeyl (gmn:Xa)

(gpan (msm), xg (m,m))
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

Amplitudes from the super SFT

» This would be correct, if z, (m) corresponded to a good “gauge choice”.
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

Contact term problem

o X s X %
Joodt e 4 fb e — > [t

B
=
Il
S

Vi VaX (21 (1) X (22 (t)) /b>

8X2mpA axgrcp.

o om do not span the two

» The amplitude diverges at ¢t = 0, because

dimensional space transverse to the symmetry orbit. Namely it is a bad

“gauge choice” at t = 0.
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

From the point of view of 1-st quantized formalism

Since the “gauge” we choose is not good at t =0 in
A = / dtF (1)
0

why don't we take a different gauge for ¢ ~ 0, namely a different way to place the

picture changing operators:
Ay = / dtF (t) + / dtF’ (t) 7
a 0
F' (t) = <V1 VX (21 (8) + Az) X (22 (t))/b>
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§2 Super SFT vs. 1-

st quantization

In order to avoid divergence

§2-2 The 1-st quantized superstring theory

Ay = / dtF (t) + / dtF' (t) ?
a 0
F

(0= (Vi VX (21 (0) X (2 () [ 1)
F )= (Vo VX (2 0+ 82) X (2 0) [ 1)
21(t)
/\/
q . .
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

This does not work

Ay (a) = / h dtF (t) + / ’ dtF’ (t) 7

a 0

Ay (a) depends on how we choose a.
0,44 (a) =F' (a)— F(a) #0

Since there is no canonical way to choose a, the result becomes ambiguous.

30/63



§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

FI(t) = F(t)

Ft) = <V1-~V4X(z1 ) X (22 (t))/b>
P () = <V1---V4X(z1 (1) + A2) X (22 (t))/b>
Since

X (51 (t) +¢) = X (21 (8)) = {Qu€ (1 (1) + A2) — € (21 (1))}
we get
P F() = <V1~~V4{Q,x(t)}X(Zz(t)) / b>
Vi Vi€ (a () 4 A2) — € (21 () X (22 (1)
Ouf (8) £ 0
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

The correct amplitude is given as

Ay = /Oo dtF (t) + /a dtF' (t)—f (a)

0

> 0o (A4) = F'(a) — F(a) = 0o f (a) =0
» f(a) comes from the “vertical segment” (Saroja-Sen 1992, Sen 2014)

z1(a)+Az
f@= [ L LR X (2 0)

z1(t)
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

General amplitudes in the first quantized formalism

They suffer from divergences coming from the bad “gauge choice™

<H5(ﬁ) (21) Hé ) (Zr) >

~ 1 ) Hi,r E (2i,Zr) ) HT U(ZT)2
Ia] Oz — > Zr —21) Hi>j E (2i,25) [1ss £ (Zr, Zs) [T, o (zi)2

{Zi =Zzj . contact term

Ie] OS2z — >, Zr —2A) =0 :spurious poles
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

General amplitudes

In order to avoid the singularities, we divide the moduli space into patches and

oU

_.. spurious
sigularity

» The spurious singularities are of codimension 2 and we need the

discontinuities.
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

General amplitudes

A=Y [ Tlamarm+Y [ fov
v U ou YU
This expression is not useful in calculating the amplitudes. It is better if we do not

have the second term.

» We can have an expression without the second term if the supermoduli space

is projected/split.

» For higher genera, the supermoduli space is not holomorphically

projected/split.
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§2 Super SFT vs. 1-st quantization  §2-2 The 1-st quantized superstring theory

Witten's prescription

The expression as an integral over the supermoduli space is more illuminating

A= /FHdma Hdng/\ (m,n)

» I is a contour of m, which can have a nilpotent part.

» [ is taken to be any contour because A is analytic in m,, if it behaves well

at infinity.

nilpotent Ma
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§2 Super SFT vs. 1-st quantization  §2-3 Super SFT vs. 1-st quantization

§2-3 Super SFT vs. 1-st quantization

The first quantized formalism yields

AHdma HdnUA(man)
%:/[JgdmaF(m)+§U:/(9UfaU

A

» Neither of these are useful for practical calculations.
» A superstring field theory should provide a systematic rule to yield either of
these

» or more enlightening expression.
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§3 Dimensional regularization of the light-cone gauge SFT

§3 Dimensional regularization of the light-cone gauge SFT
§3-1 Light-cone gauge super SFT

§3-2 Dimensional regularization

§3-3 Light-cone gauge super SFT vs. 1-st quantization
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§3 Dimensional regularization of the light-cone gauge SFT

§3-1 Light-cone gauge super SFT

§3-1 Light-cone gauge super SFT

7 =T (Mandelstam, S.J. Sin)

1 Lo+ Lo—1
5/[2¢.<i&_o+0

(67

><1>+g<1>.(<1>*<1>)}

Contact term problem (Mandelstam, Klinkhamer-Greensite)
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§3 Dimensional regularization of the light-cone gauge SFT  §3-1 Light-cone gauge super SFT

Light-cone gauge super SFT

/ dTdf

As in the bosonic theory

224N ‘ 2 N X't .
A = /HdtI < H (‘()2/)) 1Gke (21) H VTLC> e 2l
4 =1 =1

29— 24N XH 4t ghosts

N
= /Hdtz <H7§ (uzb + fizd) H XX (21, %r) H Vf‘”“>
T A I=1 r=1

The contact term problem has the same origin as the one in the Witten's super
SFT.
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§3 Dimensional regularization of the light-cone gauge SFT  §3-1 Light-cone gauge super SFT

No spurious poles

924N ‘ 2 N X't .
A = /HdtI < H (‘()Qp) 1Gke (21) H VTLC> e 2l
4 =1 =1

29—24+N XH pH ghosts

N
/Hdtz <H7§ (uzb-l—,ﬁzl;) H XX (21,%1) H Vfonf‘>
T T I=1 r=1

» The first line involves no 3~y system.

» In the second line, ¥ [a] (0) which comes from the 1% cancels

1 1

Vo] Xz = 22 Zr —24)  9[a](0)

Only the contact term problem
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§3 Dimensional regularization of the light-cone gauge SFT  §3-2 Dimensional regularization

§3-2 Dimensional regularization
Light-cone gauge SFT can be formulated in any d

_ 1 . L0+£0—% g

> LC gauge SFT is a completely gauge fixed theory.

» The Lorentz invariance is broken.

/63



§3 Dimensional regularization of the light-cone gauge SFT  §3-2 Dimensional regularization

Dimensional regularization

Even for d # 10, following the same procedure as that in the critical case

2g—2+N . 2 N Xyt s
A = /HdtI < H (6)2/))7Z GEC (z1) H VTLC> e” 16 L
T =1 r=1

29—24+N XH 4t ghosts

N
/Hdtz <H}§ (prb+azb) [ XXz ][] V:onf.>
z 7 I=1 r=1

but with a nontrivial CFT for X* (X* CFT).

» The worldsheet theory becomes BRST invariant

X*+ X b,c
¢ = 12—-d + d-2 — 10 = 0

In the second-quantized language, DR is a gauge invariant regularization.
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§3 Dimensional regularization of the light-cone gauge SFT  §3-2 Dimensional regularization

X= CFT

d—10

Sx+ = —%/d%d@dé (DXTDX™ 4+ DX"DXT) + Csuper [®]
X+ =% 40T 4+ i0pT + i00F*

Touper [0] = —% / d22d0do (D@D@ + 9§§22R©)

o =1n ((D@+)2 (Dé+)2) —Ing.z

DX+

ot= "o
(0X+)>

» This theory can be formulated for (9,, X ™) # 0

> It is a superconformal field theory with ¢ =12 — d.
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§3 Dimensional regularization of the light-cone gauge SFT  §3-2 Dimensional regularization

Dimensional regularization

— /de9

29— 2+N Xt

’(62 ) 2 GLL HVLC> e—dl;(fr

b
Il

e

29—2+N N
/HdtI <H%(}L1b+ﬁzg) H XX(ZI«,ZI)HVTCODf‘>
z z =1

r=1

XH M ghosts

_d=2p

e 16 |Z[—ZJ| f0r|21—zJ|~O

By taking d to be large and negative, the amplitudes do not.diverge. €3
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§3 Dimensional regularization of the light-cone gauge SFT  §3-2 Dimensional regularization

Dimensional regularization

» What matters is the Virasoro central charge ¢ rather than the number of the
spacetime coordinates

XL,¢’L

2 N -
o
[TV e” 16 1

r=1

29— 2+N
/Hdt1<
I=

» In order to incorporate the spacetime fermions, one can take the worldsheet

\(8%)*% G (2)

1

theory to be for example
X, i SU(2)super WZW x 2M (6, a,B,fy) x 3M
c= 12 4+ (Bs+3)x2mM  +  (-3)x3M
where (Z;, é,Bﬁy) are of weight (1 0,2 5 2)
» We can deal with only the even spin structure amplitudes.
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§3 Dimensional regularization of the light-cone gauge SFT  §3-2 Dimensional regularization

Remarks

» We can realize “SFT in fractional dimensions” and the regularization is not

restricted to perturbation theory.

» The dimensional regularization works as a UV/IR regularization

Lo+ Lo — 52
S:/ 1<1>'<167‘M><1>+§<1>-(<1>*q>)]

| i~
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§3 Dimensional regularization of the light-cone gauge SFT  §3-3 Light-cone gauge super SFT vs. 1-st quantization

§3-3 Light-cone gauge super SFT vs. 1-st quantization

29—24+N 5 2 N Xt Ly
ALC _ /HdtI< 11 ‘(azp)—z ol I1 VTLC> o SET
z I=1 r=1

2g—2+N XM M ghosts

N
/Hdtz <H7{(H1b+ﬂ1b) H XX (Z[,Z])HV,.CO“{>
v e I=1 r=1

/M d*mF (m,m)

» This expression is well-defined with ¢ large and negative.

» We define the amplitudes for d = 10 by analytically continuing ¢ to 10.
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§3 Dimensional regularization of the light-cone gauge SFT  §3-3 Light-cone gauge super SFT vs. 1-st quantization

In order to get an expression valid for any ¢

29— 24N XH M ghosts

N
ALC _ /Hdtz <H% (,uzb-i—ﬁzg) H XX (z1,21) H VTCOnf.>
v T I=1 r=1

» Taking a small neighborhood D, of the singularities, we get

[m

@D(

Afirst :/ dP>mF (m,m) + / dP’mF’ (m,m) + /
s D, ( )+ b, (m,m)+ 6Def

» This 1-st quantized expression is valid for any ¢ and independent of e.
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§3 Dimensional regularization of the light-cone gauge SFT  §3-3 Light-cone gauge super SFT vs. 1-st quantization

Dimensional regularization

Afirst :/ d®>mF (m,m) + d’>mF’ (m,m) + / f
M- D, ( ) Z D, ( ) Z 8D,

» For ¢ large and negative,

lim [ d*mF’ (m,m) = lim f=0
e—0 D. e—0 8D,

and
AlTst = / d*mF (m,m) = A¥©
M

» The limit ¢ — 10 in the light-cone results coincide with the 1-st quantized

one.
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§5 Conclusions and discussions

» There is still something not well-understood in the first quantized formalism

of superstrings.

» Dimensional regularization of the light-cone gauge super SFT can be used to

reproduce the results of the first quantized formalism.
» Supersymmetry breaking in superstring theory?
» Dimensional regularization in Witten's cubic SFT?

» Nonperturbative calculations by SFT?



Jump

First-quantized formalism

Worldsheet action

= si / 20\ /G O X 0 X,
T

> reparametrization invariance: o™ — ™ + €™ (o)

» Weyl invariance: g, (0) — €57 g, (0)

Amplitude g d X
Imn —
. wor%s:heet/ rep. Weyl ne
» Vi (¢=1,---,N): vertex operators
axd
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oI ) o T en ™ o]
1

T

gfg : Arakelov metric
N . 2z
p(z) = ZaT llnE(z,Zr) — 27m'/ w(ImQ)_1 Im/ w]
r=1
_ 1 ‘
Nogy = — [P (z70m) — lim (p(2) —ayIn(z — Zr))]
Oy z2—>Z

BACK1 , BACK2

«O>» «Fr «E»r» «E>»

DA
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rep. X Weyl
LA

™

A

\

A

o Gmn (m)

(o >

Gmn

Q>
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Jump

First-quantized formalism

Worldsheet action

1
I = 8— /dZG\/g[gmnamXuanX/L - i’l/)lu"ymam/wﬂ
™

1
—Y " XaOm Xy + 7 (V7" Xa) X
> Xo: gravitino field on the worlsheet

> superreparametrization invariance and super Weyl invariance

Amplitude

I3 12
A _ Z / [dgmnandX d¢ ] €7IV1 . VN

superrep. X superWeyl
worldsheet P P P y
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superrep. X SuperVVeyl (gmny Xa)

Ne: odd moduli (Grassmann odd)EXZD

«Or B <= 4

DA
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Jump

Picture changing operator

A convenient choice is X7’ = 62 (2 — 2,) and % = 3, 1562 (2 — z,)
5o = [ @B =5 (ea)
Iy = ~~~+/d22XZG—I’+ZnU
@D

/ [ dma [ [ dno [dX*dy* dbdedBdy]

eflgAf.Vl A VN H Ba H 0 (50)
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Jump

Picture changing operator

A convenient choice is X7’ = 62 (2 — 2,) and % = 3, 1562 (2 — z,)

by = / B0 = B (20)

Iy, = /dQZXQG =1+ Z%G z

/ [ dma [ [ dno [dX*dy* dbdedBdy]
x e tso vV [ Ba [] 6 (82)
o / [ dme [dx" dy* dbdedBd]

1 VNHBOLH(é(ﬁ)G+)(ZU)
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Jump

Picture changing operator

A convenient choice is X7’ = 62 (2 — 2,) and % = 3, 1562 (2 — z,)
5o = [ @B =5 (ea)
Iy, = -+ /dQZXZG =1+ an
@D

/ [ dma [ [ dno [dX*dy* dbdedBdy]
el vV [[ Ba [0 (80)
o / [ dme [dx" dy* dbdedBd]

vV [[Ba T X (20)

57 /63



Jump

Projected, split

the supermoduli space is covered by patches with the local coordinates which are

related by the transformations of the form

ml, = fo(m)+0O (7}2)
Ny = ng m) g + O (n°)
» If one can take the transformations of the form

o fa (m)
1, Zgw m)ner + O (n°)

3
[

the supermoduli space is projected.
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Jump

Projected, split

the supermoduli space is covered by patches with the local coordinates which are

related by the transformations of the form

ml, = fo(m)+0O (7}2)
Ny = ng m) g + O (n°)
» If one can take the transformations of the form

me, fo (m)

Z Yoo’ (m) Mo’
0-/

,

the supermoduli space is split.



Projected, split

the supermoduli space is covered by patches with the local coordinates which are

related by the transformations of the form

mly = fo(m)+0O ()
Ny = nga m) e + O (11°)

» If the supermoduli space is projected

o fa (m)
1, Zgw m)ner + O (n°)

3
[

the amplitudes can be expressed

8/63
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Backup

Contact term problem

The superSFT yields obviously a wrong answer

» Even the four point tree amplitude is divergent, because the picture changing
operators come close to each other

» This divergence spoils the gauge invariance of the theory.

This is called the contact term problem.
60 /63



Backup

Problems

This way of calculation suffers from problems:
» spurious singularities

» total derivative ambiguity

61/63



Backup

SFT amplitude

SFT /Ooodt<V1---V4X(z1 (t))X(ZQ(t))/b>
I
1-st / 1 dma [dx"dy* dbdedBdy]

xe ViV [[Ba ][ X (20)

The SFT amplitude corresponds to the specific choice
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The way to deal with the contact term problem

In order to deal with the problem, modifications of Witten's action are proposed:

» modified cubic

BRST invariance of multiloop amplitudes

» Berkovits

BRST invariance of tree amplitudes

These formulations take the string field to have pictures different from the

canonical ones, it will need some work to relate these to the first-quantized results.
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