Light-cone gauge superstring field theory in linear dilaton

background

N. Ishibashi

University of Tsukuba

22 September , 2016
JPS meeting



Light-cone gauge closed super SFT

Feynman amplitudes diverge.
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Feynman amplitudes for superstrings suffer from

@ infrared divergences
@ spurious singularities

(a) collisions of the picture changing operators (or Tr)

(b) divergences of the S+ partition function

e formulations using supermoduli space ( Witten )
@ avoind the singularities patchwise ( Sen-Witten )

e SFT with nonpolynomial interactions ( Sen )

In the LC SFT, we do not have the problem (b) and may be able to deal with the

problem with only the three string interaction.



We would like to get finite amplitudes

Strategy
We regularize the amplitudes, by considering the SFT in linear dilaton background

= —iQX"'

@ The amplitudes become finite for Q% > 10.
@ The amplitudes coincide with those obtained by the 1-st quantized approach
in the limit Q — 0.

Based on Murakami-N.I. JHEP 1606 (2016) 087
N.I. arXiv:106504666, Murakami-N.I. to appear



LC gauge super SFT in LD background

Linear dilaton background ® = —iQX"! (ds? = 29.:dzdz)
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We construct SFT (type II) with the worldsheet theory for X? 4% ¢? (i = 1,---8)
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LC gauge super SFT in LD background

Feynman amplitude @
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o F(t) is expressed explicitly in terms of the theta functions defined on the

Riemann surface.
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Possible divergences arise from the combinations of

T—=0
0 — by

Infinitely long cylinder

T =00
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@ Following Berera, Witten, we modify the contour as

e ([ o) ar

@ The Feynman ic takes care of the divergences of this kind
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Finiteness

lp(z1) = p(z2)[ ~ € = 0

F(E) ~ e_%'i'%Qz

@ For Q =0, F(#) becomes singular.

@ For Q2 > 10, F () becomes regular.

e For Q2 > 10, € > 0, we find F(#) is a continuous function without
singularities and Agc = [Tl dtx F(%) is finite.

@ We can define the amplitudes for Q2 > 10 as analytic functions of @ and

take the the limit Q@ — 0e — 0.

@ The results coincide with those of the first quantized approach. @ -
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Conclusions and discussions

@ In order to regularize the Feynman amplitudes, we consider light-cone gauge

superstring field theory in linear dilaton background ® = —iQX".

@ The amplitudes become finite for Q% > 10 and they can be defined as
analytic functions of Q. The amplitudes without the background is given by
the limit Q — 0.

@ The results coincide with those from the first quantized approach.
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Outlook

Equivalence of the amplitudes with odd spin structure.

@ Our approach looks quite similar to the dimensional regularization in field

theory, but there are crucial differences:

The number of 7%, %" is not changed. Therefore the number of the gamma

matrices is not changed and we do not have any problems with fermions.

o We have a concrete theory for @ # 0. It may be possible to discuss nonperturbative

problems using this approach.
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Anomaly factor

N . o 29—2+N . .
o [T orted )7t ] T [@he)H 0%
r=1 I=1

e r=1,...,N label the punctures CEXZD
@ I =1,...,2g — 2+ N label the interaction points, where dp(z;) = 0.

e g2 Arakelov metric on the surface

o Nit = & (p(zrn) = limzsz, (p (2) = pf In (2 = Z,)))

r-th external line

Zr(r)
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Remark &

Tadpoles and mass renormalization are irrelevant to the limit € — 0.

@ Tadpoles: belong to the “Tiny neck” category

2ma ()
"
—
7 0

@ Mass renormalization: If p; is on-shell, py is generically off-shell for @ # 0.

PI+p3+2Q(1—g)=0

=1~
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X* CFT

1 n — —
e = ’?/ d?2d9d (DX DX~ + DX~ DX ") = QTsuper []
s
X* = o +ioy* +i0pF + i00FF
1 n — - A
Psuper [2] = —5— / d%2dfdf (D<I>D<I> + 005> R¢>)
us

2

ODXTDXT
= A 0.5
d=In[0X" — @ +)2 —Ing,z

@ This theory can be formulated in the case (9,, X ") # 0.

@ In the case of the LC gauge amplitudes, we always have

[Te X" (pf #0) and (9, X ) #0.
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X* CFT axd

1 _ _
Sy+ = 72—/d2zd9d0 (DXTDX™ 4+ DX~ DX7T) — Q*T'super [@]
s

T(z,0) = G(z)+06T(2)

= % :OXTDX™ (z): +% : DXTOX ™ (z) : +2Q%S (z, X )

e It is a superconformal field theory with & = 2 + 8Q?.

@ The worldsheet theory becomes BRST invariant

X+ Xt ghosts
¢ = 248Q%* + 8-8Q* — 10 = 0
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Comparison with the first quantized approach

The LC amplitude can be recast into a conformal gauge expression (even spin
structure)

29—2+N
AIC‘QC = /Hdt}(< H ‘(82) 4TLC (21) HVLC> 67(17Q2>F
K I=1 gﬁg
29— 24N XH 4t ghosts
- /Hdm] <H7§ (15 + 7isB) H X(z,)X(z,)HVCO“f~>
r=1

e with a nontrivial CFT for X* ¢* (X* CFT). (Murakami-N.l.) @&

° X(2) = —e?G + cO¢ + 1(%1762‘z> + 1b (23n62¢ + n862¢) picture changing
operator (PCO)

@ PCO'’s are placed at the interaction points.
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First quantized approach (Verlinde-Verlinde)
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o If the PCO'’s are placed at z = z;(m), but the amplitudes suffer from the so

called spurious singularities.

@ Sen-Witten gave a prescription to write down amplitudes placing PCO’s
avoiding the spurious singularities patchwise.
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ALC ASW

e When Q? > 10,

2g—24N N
SW o %z conf.
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because
e putting z;(m) = zr does not make the amplitude diverge

e Sen-Witten prescription does no depend on the choice of z;(m) axDd

Therefore as an analytic function of @, Ap° =

We can get limg_0 A~ = A5V, if AGW is well-defined.
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