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Dimensional regularization in string theory?

e Why regularization?
Superstring theory is UV finite. Why do we need regularization?

@ Dimensional regularization?
The theory should be formulated in the critical dimensions.
Dimensional regularization should be impossible.
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Dimensional regularization in string theory?

e Why regularization?
Superstring theory is UV finite. Why do we need regularization?
We use the dimensional regularization to deal with so-called “contact
term problem”.

@ Dimensional regularization?
The theory should be formulated in the critical dimensions.
Dimensional regularization should be impossible.
We consider dimensional regularization of LC gauge SFT. It provides a
Lorentz noninvariant but gauge invariant regularization.
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]
In this talk

| would like to explain
@ What were the problems/questions? (~ 3 of the talk)

o SuperSFT perturbation theores suffer from the contact term problem.

o This problem is related to the problems of superstring perturbation
theory much discussed in 1980's.

o Recently, Witten gave a way to define the amplitudes without any
ambiguities.

@ What is the answer we propose? (~ 1 of the talk)

e In the case of LC SFT, the contact term problem can be dealt with by
using the dimensional regularization.

Based on collaborations with Baba and Murakami.
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§1 Contact term problem

§1 Contact term problem

String perturbation theory from SFT

Example: Witten's cubic SFT (bosonic)

S:/BWQ@+§\1/-(\1/*\1/)}

@ String field: ¥ [X* (0),b(0),c(0)]
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§1 Contact term problem

Perturbation theory of bosonic strings

Taking the Siegel gauge bp¥ = 0,
@ gauge fixed action

1
S = / |:2\IIICQL0\III + %‘1” . (\I// * \I//)

e Feynman rule

propagator
7o = by [y dte~ Lo

fooodt \bO:fb

vertex \/
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§1 Contact term problem

Feynman diagram

Four point tree amplitude

/ t \ Vi Vi
General amplitudes are expressed in the form

Av= ) /Hdta<vl---vN1;[/0ab>

worldsheet a worldsheet

with t,: Feynman parameters
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§1 Contact term problem

Amplitudes from the first-quantized formalism

B dgmndXH] o1
A = Z /rep ><Wey| VeV
worldsheet

= Z /H dmg, [dXPdbdc] e etV - Vi H B

worldsheet a

space of g
rep.xWeyl
@ mg: coordinates of the moduli space

=moduli space of worldsheet Riemann surface

@ B,: antighost insertions to soak up the zero modes:

rep

/ d2o\f b
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§1 Contact term problem

First-quantized formalism

A= > [[ dma [dx*dbde] e V1 - Viy [ [ Ba

worldsheet a

@ This coincides with the SFT result:

A= > /Hdta<V1---VN1;[/0ab>

worldsheet a

e The Feynman parameters t,of SFT parametrize the moduli space of
Riemann surfaces.

o Bu [ Poyg i [,
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Superstring perturbation theory

Witten's cubic SFT for superstrings

_ 1 g s .
S = / [2\11(02‘11 + gq; X (5) (U \I/)} + fermions

e X (0): picture changing operator

G (0): worldsheet supercharge

G = yY"i0X,, + ghost part
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Superstring perturbation theory

Taking the Siegel gauge bp¥ =0

@ gauge fixed action

S = / B\I}’COLO\I/’ + 9y . x (5> (U \p’)}

3
e Feynman rule

propagator
Jy¥ dt

bo

o= bo fooo dte—tLo

vertex

2

\bo:fb

N
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§1 Contact term problem

Superstring perturbation theory

Four point tree amplitude

\J Vi V2
<*> oo dt
Vi Vi

A= /OOO dt <V1 Vi X (21 (8) X (22 (t))/b> + other channels
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§1 Contact term problem

Superstring perturbation theory

Four point tree amplitude

\J W Vs
’;:f/ <H I
Vi Vs

A= /OOO dt <V1 Vi X (21 (8) X (22 (t))/b> + other channels

The integral diverges because z; (0) = 22 (0) and

X (21) X (29)~(21 — 22) 2 x regular operator (21 ~ zo)
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§1 Contact term problem

Contact term problem

The superSFT vyields obviously a wrong answer

@ Even the four point tree amplitude is divergent, because the picture
changing operators come close to each other

@ This phenomenon is ubiquitous. Amplitudes generically diverge.

This is called the contact term problem.
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§2 Problems about superstring perturbation theory

§2 Problems about superstring perturbation theory

@ The amplitudes from the superstring field theory are obviously wrong.
We need to modify the action so that it reproduce the right (the
first-quantized) results.

@ Actually the first-quantized formalism also has problems in multi-loop
calculations.
The contact term problem can be discussed in the context of the
problems of first quantized superstring perturbation theory.
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§2 Problems about superstring perturbation theory

Amplitudes from the first-quantized formalism

dgmnandX'udwu] -1
A = ViV
Z /superrep xsuperWeer ! N

worldsheet

= > / 1] dma H dny [dX"dy*dbdedBd]

worldsheet «
eilg'f"/l cee VN H Boc H o (ﬁa)

space of , . )
P Imn:Xa_ —gsypermoduli space of superRiemann surface

superrep.xsuperWeyl
@ M, Mo coordinates of the supermoduli space

@ B,,d(B,): antighost insertions to soak up the zero modes

8X9rep
L
Mo
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§2 Problems about superstring perturbation theory

Picture changing operator

o Orep.
If one takes 7, so that % — 52 (2 — 2,) and integrating over 77, we get
A=) / [ dma [ dno [dX*dy#dbdeddy]
worldsheet” @ o

x e etV Uy [[ Ba ][]0 (85)
- Z H dme, [dX dipH dbdedBdry)

worldsheet a

xe Vi Vn [ Ba [ X (20)
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§2 Problems about superstring perturbation theory

Picture changing operators

Orep.
e Taking a’é# = 0% (2 — 2,) we get the amplitudes with picture
changing operators inserted.

Orep.
@ We can freely take z, as long as 8’32;70 (a = 1,.. - 2g—2+ N) span
the space transverse to the symmetry orbits. It is like a gauge choice.

superrep. x superWeyl M Xa)

(g (), XG (my )
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SFT amplitude

SFT amplitude

A= [T (Ve VX )X (2 0) [0)

The 1-st quantized result

A = > / [[ dma [dX*dy*dbdedBd)
worldsheet” @

xe Vi Uy [ Ba [ X (20)

The SFT amplitude corresponds to the specific choice

axgrep. e B
o 0°(z—24(t)) (c=1,2)
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§2 Problems about superstring perturbation theory

Contact term problem

e SFT amplitude corresponds to the choice 8# =62(2— 2, (1))
o=1,2.

i i 8X(irep. aXQrep.
@ The amplitude diverges at ¢t = 0, because o o do not span
the two dimensional space transverse to the symmetry orbit. Namely it

is a bad “gauge choice” at t = 0.
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§2 Problems about superstring perturbation theory

In order to avoid divergence
Since the “gauge” we choose is not good at ¢ =0 in
A, = / dtF (1)
0
PO = (T VX (2 0)X (2 ) [ 0)

why don’t we take a different gauge for ¢t ~ 0, namely a different way to
place the picture changing operators:

Ay = / dtF (t) + / dtF' (t) ?

0

F )= (Vi VX (1 (04 22 X (2 (0) [ )
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Total derivative ambiguity

Ay (a) = /Ooth(t)—l—/ath/ (t) ?

J a 0
This does not work because the expression depends on how we choose a.

F'(t) = F(t) = 0f ()

0 a b t

b b
AW =A@ = [ d(F©-FO)= [ @0 @) =F0)- ) £0

Since there is no canonical way to choose «, the result becomes ambiguous.
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§2 Problems about superstring perturbation theory

Total derivative ambiguity

PO = (T VX (2 0)X (2 ) [ 0)
P = (Vi VX (1 (04 22 X (2 (0) [ )

Since
X (21 (t) +¢) = X (21 (1) ={Q.x (t)}

we get

F'(t) = F (t)

(- T@x@x 2 0) [b)

Op (Vi Vax (1) X (22 (1))
O f (1)
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§2 Problems about superstring perturbation theory

The problems about superstring perturbation theory

In general we have

@ For lower order amplitudes, there is a way to take a good choice of
2o (m) all over the moduli space.

@ For higher order amplitudes, this is impossible and the amplitudes
become ambiguous.
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§3 Supermoduli space

§3 Supermoduli space

Ay (a) = / h dtF (t) + /0 ' dtF' (t) ?

@ The amplitudes become ambiguous because
b b
/ dtF’ (t) # / dtF (t)

@ The different choice of z, corresponds to a different choice of 7,.

o ?rep
( )ézng =% (2 — 20))
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§3 Supermoduli space

Supermoduli space

We started from

A = dme, TT dno (X ditdbdedBdy
[ T ameT] i ]
x e let Vi---Vn H B, H o (,BU)
= U/QI]:dTn05I]:dﬁaf\(Tn,ﬁ)

Considered as an integral over the supermoduli space (m,7), it does not

depend on the choice of 7.
H dmy, H dnysdet < m', 1] )>

!/ /
1;[ dm’a ];[ dT/o‘ 77)

X (m/ﬂ?/) = A(m,n) <sdet <m>>1

25 /54



§3 Supermoduli space

Supermoduli space

Considered as an integral over the supermoduli space, there should not be
any ambiguity.

\ / Vi Ve
g <H Il
Vi Vs

A4:/aooth(t)-f-/ath/(t)-f-"' ?

0

Let us rewrite the amplitude as an integral over the supermoduli space and
see what happens.
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Total derivative ambiguity

A4:/ th(t)+/ dtF' ()4 7
a 0

For a < t, the integration over the supermoduli space is

/dtdmdnzl\ (t,m,m2) = /dtdmdm (H (t) — mneF (t))

~ [

For0<t<a

/ dt'dnydnyN (Y, m1,m5) =
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§3 Supermoduli space

Total derivative ambiguity

/th(t) _
/ dt'F' (') =
m
2

mnz

t is real

/ dtdnidnaA (t,m1,m2)
/ dt'dnydny N’ (', m1, m5)
m

2
t+g () mn2

k2

/\_/
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Total derivative ambiguity

Formally

/th (t) Z/dtdmdnz/\(tml,nz) =/dt/dnidné/\' (', n1,m5) :/dt'F' (t')
but

| / b dtF (t) # /a ’ dt'F' (¢')

because a <t < b does not mean a < t' <b.

172 \i

t is real
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Total derivative ambiguity

b

dt'F' (t') —gH' (b) + gH' (a)

b b
/th<t) = /dtdmdmA(tﬂh,ﬁz)
b+g(b)ninz
~ [ anjan, dN (¢ 1)
a+g(a)ninz
b+g(b)n11m2
- / dndif / at' (H' (') — iy F (¢))
a+g(a)mnsz

Therefore

b b
/ at (F/ (1) — F (1)) = / a0, () = £ (b) — f (a)

with f = gH’
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§3 Supermoduli space

Witten's prescription
The amplitude is given by an integral
A= /thdmd??ﬂ\ (t,m)
@ [ is a contour of ¢t which can have a nilpotent part.

@ [ is taken to be any contour because A is analytic in ¢, if it behaves
well at infinity.

mnz \i

t is real T
—
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§3 Supermoduli space

Witten's prescription

A= | dtamdnn t.0)
I

For our purpose, it is convenient to take I' to be

mnz '

——/ l‘

t is real
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§3 Supermoduli space

Witten's prescription

A= | dtamdnn t.0)
I

For our purpose, it is convenient to take I' to be

mmne \i

_/F

t is real

/O ’ dtF’ (t)
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§3 Supermoduli space

Witten's prescription

A= | dtamdnn t.0)
I

For our purpose, it is convenient to take I' to be

mmne \i

—/F

t is real

a

/ / U«+g(a)771772 / !/ / ) !/ !
[amans [ a1 (¢) = wapF () = ot (@ = 1 (@
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§3 Supermoduli space

Witten's prescription

A= | dtamdnn t.0)
I

For our purpose, it is convenient to take I' to be

mmne \i

—/F

t is real

a

/ h dtF (t) + A ’ dtF' (t) — f (a)
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Total derivative ambiguity

So we get the amplitude

A4:/ooth(t)+/ath’(t) _ f(a)

0

@ This does not depend on a

0o (Ag) = F' (a) — F (a) — duf (a) = 0

@ Fora=ex1

Ay = /Ooth(t)—l-/eth/(t)—f(e)

0
~ [ Tarm -

f (€) gives the conterterm to cancel the divergence of [* dtF (t)
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§3 Supermoduli space

General amplitudes

In general, we have the expression

A = /F];[dmal;[dna]\(m,n)
_ ZU:/Ul;IdmaF(m)—i—%/anaU

These expressions are not useful in calculating the amplitudes. It is better
if we do not have the second term.

@ We can have an expression without the second term if the supermoduli
space is projected/split.

@ For higher genera, the supermoduli space is not holomorphically
projected /split.
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SFT

Ay = /Ooth(t)+/Eth/(t)—f(g)_|_...

J0

~ [Tarm-s@+--

@ From the SFT point of view, the counterterm f (€) corresponds to a
4-string counterterm in the SFT action.

@ We need to add 5-string, 6-string... counterterms. This is a disaster
for SFT.
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§3 Supermoduli space

The way to deal with the contact term problem

In order to deal with the problem, modifications of Witten's action are
proposed:

@ modified cubic

BRST invariance of multiloop amplitudes

@ Berkovits
BRST invariance of tree amplitudes

These formulations take the string field to have pictures different from the
canonical ones, it will need some work to relate these to the first-quantized
results.
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§4 Light-cone gauge SFT

t=x

(:].(‘(;I.(,'

The integral diverges.
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Light-cone gauge SFT

There exists a procedure to rewrite the LC gauge amplitude into the
coformal gauge one.

2 X! )
i f dm<m g va> o2 rin(00%9)
I=1 C
2 XH.bc
— /de9<y{Mbj§ bHXX(z],ZI)HWOHf~>
=1 r C

This divergence has the same origin as the one in the previous sections.
38/54



Light-cone gauge SFT

9 XH.b,e
/de9<7§Mbj§ H XX (21,7 chonf>

r C
@ The divergence can be dealt with as in the previous section.

|m
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§4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

Light-cone gauge SFT can be formulated in any d

L Lo — 4=2
Sz/[i@-(i@t—(m)@Jrg@-(@*@)

(6]

o LC gauge SFT is a completely gauge fixed theory.

@ The Lorentz invariance is broken.
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§4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

Even for d # 10, following the same procedure as that in the previous slide

2

A= f dm<ﬁ) gy va> 4200057

9 XHbe
/dea <?§ub7§ BH XX (21, %) Hv,?onf~>

but with a nontrivial CFT for X+ (X* CFT).

@ The worldsheet theory becomes BRST invariant

C

X+ X b,c
¢ = 12—-d + d-—2 — 10 = 0
In the second-quantized language, DR is a gauge invariant

regularization.
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§4 Dimensional regularization of light-cone gauge SFT
+
X+ CFT

d—10

1 - _
Sxe = —5- / d?2d0df (DXTDX™ + DX~ DXT) + Csuper [P]
™

X* = X* 4 iyt + i)t +i00F*
Dsuper @] = —% / d?2d0df DO DD

DX+
(0x+)>

®=1In ((D@+)2 (Dé+)2) ot =

@ This theory can be formulated for (9, X ) # 0

@ It is a superconformal field theory with ¢ = 12 — d so that the total
central charge becomes d —2+ 12 —-d — 10 =0.
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§4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

i

2 —
A = /de9 <H ’(32 -1 GLQ ’ HVLC> o~ L2 [n(9p0p)]
I=1 c
2 XHbe
= /de9 <?§M57§M6H XX (21,%) Hvrconf.>
I=1 A C
8_(11;62F |21 — 22| for |21 — 22| ~ 0

By taking d to be large and negative, the amplitudes do not diverge.
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§4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

2 XH b,c
/de0<7fub7{ BH XX (2, zj)chonf>

@ For d large and negative, the integral is convergent and coincides with
the expression

C

A= d*mF (m,m) + / d’>mF’ (m,m) + f
M~—D. e 0D,
the second and the third term vanishes in the limit € — 0

@ We can define the amplitudes for d = 10 by analytic continuation. If
the limit d — 10 can be taken without encountering divergences, the
results coincides with the usual one.
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§4 Dimensional regularization of light-cone gauge SFT

Remarks

@ The dimensional regularization works as a UV/IR regularization

Lo+ Lo — 42
S—/ £y (i&t—m>¢+g®-(¢*®)]
2 « 6

| i e

@ What matters is the Virasoro central charge ¢ rather than the number
of the spacetime coordinates. Therefore we can realize “SFT in
fractional dimensions” and the regularization is not restricted to
perturbation theory.
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§4 Dimensional regularization of light-cone gauge SFT

Remarks

@ We can use super WZW model to deal with Type Il theory.

@ Dimensional regularization cannot be used to regularize the parity
violating amplitudes. We need to break the gauge symmetry to deal

with them.
@ One can consider similar way of regularization for Witten's superstring
field theory.
w0,y XH b, c
¢ = 10-d + d — 10 = 0
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§5 Conclusions and discussions

@ We have proposed a way to describe superstring theory by SFT with
only three string vertex.

@ With this string field theory it may be possible to describe
nonperturbative effects.
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First-quantized formalism
Worldsheet action

1
[=o / d*0/99™ " 0m X1 0n X,

@ reparametrization invariance: 0" — ¢ + € (o)

o Weyl invariance: gmn (0) = €@ g (0)

Amplitude
[dgmnd X *] o1
A= ViV
Z / rep. X Weyl ! N
worldsheet
o V; (i=1,---,N): vertex operators
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First-quantized formalism

A

rep. X Weyl

A

A

A

A

A

| G (m)
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First-quantized formalism

Worldsheet action

I = Si / Ao/ g™ O X 0 X — iy Oy
s

=YY" X 0O Xy + (W‘v gl Xa> xwu]

@ X gravitino field on the worlsheet

@ superreparametrization invariance and super Weyl invariance

Amplitude

dgmnan X”dﬂl}“} —I
A= ViV,
Z /superrep xsuperWeer ! N

worldsheet
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First-quantized formalism

s X
superrep. X super Weyl \(iﬂn a)

A A A A )

rep. rep.

] | (g (m,m), X5 (m, )

Ne: odd moduli (Grassmann odd)
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Picture changing operator

A convenient choice is XF;’)G =062 (2 — z5) and X2 = > 1,02 (2 — 25)

8, = /d2z><7 B = B (z0)

/ [T dma ] dno [dX*dyp*dbdedBdr)]

x e etV Vv [[Ba ][0 (8)
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Picture changing operator

A convenient choice is XF;’)G =062 (2 — z5) and X2 = > 1,02 (2 — 25)

8, = /d%xz B = B (z0)

/ [T dma ] dno [dX*dyp*dbdedBdr)]
x e etV Uy [ Ba ] 6 (8)
x / [[ dma [dX*dy*dbdedBd)

VN I BTGB G +-0) ()
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Picture changing operator

A convenient choice is XF;’)G =062 (2 — z5) and X2 = > 1,02 (2 — 25)

8, = /d2z><7 B = B (z0)

/ [T dma ] dno [dX*dyp*dbdedBdr)]
x e etV Vv [[Ba ][0 (8)
x / [[ dma [dX*dy*dbdedBd)

1 "VNHBaHX(ZU)
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Projected, split

the supermoduli space is covered by patches with the local coordinates
which are related by the transformations of the form

m/a = fa(m)+0(772>
M = Y Goor (M) e + O (%)

a-/
@ If one can take the transformations of the form

m; = fa(m)
77/0 = Zgao 770 +O(71)

the supermoduli space is projected.
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Projected, split

the supermoduli space is covered by patches with the local coordinates
which are related by the transformations of the form

mfl = fa(m)+0(772>
M = Y Goor (M) e + O (%)

a-/
@ If one can take the transformations of the form

m:x = fa(m)

77?: = Zgaa/ (m) No’
o./
the supermoduli space is split.
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Projected, split

the supermoduli space is covered by patches with the local coordinates
which are related by the transformations of the form

m/a = fa(m )""O(TIZ)
my = Zgw )10 + O (%)

o If the supermoduli space is projected
My = fo(m)
77:7 = Zgaa 770 +0 (’/ )

the amplitudes can be expressed

1

as an integral over the bosonic moduli space. 54 /54
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