Energy from the gauge invariant observables

Nobuyuki Ishibashi
University of Tsukuba

October 2012

DA
1/31



Introduction A proof of E = % (I|V (3) |®) Solutions with K, B Conclusions
9

§1 Introduction

A great variety of analytic classical solutions of Witten type OSFT
has been discovered, especially since the discovery of Schnabl'’s
tachyon vacuum solution.

Once a solution is found, there are two important gauge invariant
quantities to be calculated.

@ energy

@ the gauge invariant observables
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“Energy”

For a static solution | )

EFE = -S
11 1
= — |=(T v — (PP« T
7 5 (PIQY) + 2 (V[P T)
= Egy—Ey
Ey : "energy" for the vacuum corresponding to |¥)
Ey : '"energy" for the perturbative vacuum
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“the gauge invariant observables”

With an on-shell closed string vertex operator ¥V = ccV™, one can
construct

(IV (@) [¥)

e (I|V (i) |¥) corresponds to the difference of one point
functions

—4mi (I|V (i) |¥) = (V] cg | By} — (V] ¢ |Bo)

|By) —

|Bo)
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Energy and the gauge invariant observables

@ Usually it is more difficult to calculate

E = g% (3 (¥ Q|¥) + % (V¥ % ¥)] compared to the gauge
invariant observable (I|V (i) | V).

e For B
Y x cc0X0XY,

we expect that the gauge invariant observable is proportional
to I

@ It will be useful to prove that the gauge invariant observable
for such V yields E.
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Energy from the gauge invariant observables

We would like to show
1

E:
92

{11V (@) [¥)

for )
V= "cc0X0Xx°

™

assuming that |U) satisfies

@ the equation of motion

@ some regularity conditions

Takayuki Baba and N. I. arXiv:1208.6206
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«40>» «F)r « =)

« E
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§2 A proof of E = - (I|V (i) |¥)

String field
(W) = Oy (0)]0)

L&

< V) = 0u(0)/0)

—1 [\1

Oy (0)

Let us assume that Oy is expressed in terms of really local
operators located away from the arc |[£| = 1.
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A proof of E = 9—12 (I|V (i) |¥)

In order to prove F = % (I|V (i) |¥), we consider for h < 1

1
a2

Sk [[9)] p

é<\p|Q|\IJ> 2 (P 0) + A (I V (i) |¥)

o V= %céaXogXO is a linear combination of graviton and
dilaton vertex operators.

@ S, should describe the string field theory in a constant metric
and dilaton background.

@ The constant metric can be gauged away and the effect of the
constant dilaton is reduced to a rescaling of g.
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Soft dilaton theorem

A "Soft dilaton theorem"

Sh, can be shown to be equivalent to the original SFT action with a
rescaling of g.

S =~ |5 QN+ 3 (W W) h V()W)

_ _1;-2}1 |:; <\I/”| o) “Il”> + % <\I///‘\I/H « \If”>:| +0 (h2)

0" = |W) + O (h)
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E = 9—12 (I|V (i) | W) from the soft dilaton theorem

_912 [1 (0] Q|0) + <qf|x11*\11>+h<IV()‘I’>}

_ 1;—2h [ \I’”’ 0 ‘\IJ”> = <\IJ/'|‘I/N N \IJ”>} e (h2) 7

Substituting a classical solution |¥,;) into it

—E - ghmv ) |Pa) = —(1+h)E+ 0O (h?)

and comparing the O (h) terms
1

E:
gz

(VY () [Va)
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The soft dilaton theorem is proved in two steps. There exists x
such that

V(i) ={Q,x}
Using this fact, we obtain
111 1 .
Sl = -5 [2<\mc2|\11>+3<\If|ww>+h<f|v<z>|\v>]

1 (1 1
:‘y2b“”QW”+3@/V*@4+OUﬁ

¥) = |U) + hx|I)
Q = @-h(x—x)
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V(i) ={Q,x}
X = hm{/ 2m 58 / §§)—/<;<’5e_“s)],
j(&é) = 40Xx°(¢)eox?(§),
i = 45X0 (€) c0X°(¢) ,
K66 = — (XO (&,8) — X (i, —i)) (c0X° (¢) —ed X" (€)) .
1€
7 Py
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Soft dilaton theorem

There exists G such that

Q.6 =x—x'
(GU W) 4+ (U1|GW) = (T|Tg)
(GU1|Wg % Us) + (U1 |GUg % U3) + (U |Wg x GU3) = (V) |Wg * Us)

Using G, we eventually obtain

SullW)] ~ —912 B(\D’}(Q—h(x-ﬂ)) \\11’>+;<\11’\\11'*\1ﬂ>]

_1;-2}7/ |:; <\I/”‘Q’\I/”> + é <\If”‘\:[1” * \I/”>:|

~

0" = (1 - hG)|¥')
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[Q,6] =x — X'

QE%%[/ID+P2mg§f€) /+22mgg§5)

9¢ (6:€) =2 (X0 (6,€) — X°(i >)8X°<£>
9: (6,8 =2(X%(&,€) — X° (i, —i)) 0X° (€)

A A
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Remarks

@ The proof is valid for Oy which does not affect the definition
and the manipulations of x, G.

@ One can obtain the same relation for

_ !

)

1% ccOX 0X" hyy,
with hf, = —1.
@ For actual applications, it is desirable to find a way to derive

E = g% (I|V (i) W) more directly using the properties of
G, x and the eom.
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A more direct proof of £ = g% (I|V (i) |¥)
G satisfies the following identities:

(GU|T +T) = - [(GU|T *T) + (|G * T) + (T[T « GT)]

o

= —(U|UxT),

o

5
<

—

1
Geiee) = S{¥QY)+ 5 (¥[Q.6 ).
From these, we get

E = 912[;(\1/|Q|\I/>+;<\I/|\11*\I/>}

_ 912 [<g\m (Q W) + | W+ T))

1
-3 wliQ.0)w)]
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A more direct proof

E =

eom implies

A proof of E = g% (I|V (3) |®) Solutions with K, B Conclusions

G (@) + v < W) - 5 (¥1[Q.6]1W)
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Remarks

o If eom

A proof of E = g% (I|V (3) |®) Solutions with K, B Conclusions

is not satisfied
QI¥) +[¥xT)=|')#0,

1
a2

=3 (9% @Q1v) + ¥+ 9)) = 5 (¥][Q.6) W)

o
~
=<
5

2<Q‘I’IF>
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§3 Solutions with K, B

Most of the solutions since Schnabl’s one involve

d
K = /2;2(1%2)7’(@
d
B = /2;2(1+52)b(§)
£ 1€

The definitions and the manipulations of operators G, x are affected
by the presence of K, B.
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Okawa type solutions

As an example of such solutions, let us consider Okawa type

solutions
KB
\P:F(K)CWCF(K)
K= [sEiae@) Tl
B = /;ig(ué)b(g)n
¢ = —cII)
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Okawa type solutions

As an example of such solutions, let us consider Okawa type
solutions

KB

Y :F(K)CWCF(K)

F(K) = /OOdLe_LKf(L)

0
K /oo ks
= dLe™ " f (L)
1— F? ;

/ dLydLodLye K ceb2K Bee 9K f(Ly) f (Lo) f (L)
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wedge state with insertions

/ dLydLodLye K e b8 Bee bk £ (Ly) f (Lo) f (Ls)

B

U = /OOdLeLKw(L):/OOdLeLKL‘1{\1/}(L)

0 0
¢ (L) = /dleLQdL35 (L — L1 — LQ — Lg)

xc(Ly + Ls) Be(Ls) f (L) f (L2) f (L3)
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definition of G

How should we define G acting on wedge states?
One way to do is

We rather take
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definition of G
GV is defined so that for test state |¢) = ¢ (0) |0)
0g0) = [ AL o0 e G L 1)

Cri1
2
f(&) = <=arctan¢
s
_ dz _ dz -
00 = [sre o)~ [5he 0
Y (L) in the correlation function denotes the operator
corresponding to the string field ¢ (L).
g9
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E =5 {IIV(i)]P)

In order to obtain £ = % (I|V (i) |¥), we need
(GU1|Wa) + (U1|GW3) = (V1] Wy)
(G| Wy % W3) + (W1|GWg * W3) + (V1| Wy x GU3) = (V| Uy x U3)
Q.911w) = (x —x') )

If all these are satisfied, we get £ = (I\ V(i) | D).

@ It is straightforward to show the flrst two for G defined in the
previous slide.

@ Showing the third one is not straightforward.
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(@, 611%) = (x —x) |

Q.C)v = / dLe "5 Q.G (L)) ¢ (L)
/ dLe™ 5 G (L) {QL™ (W} (L) — £ {Qu} (L)}

QL HUH(EL) — £7H{Qu} (L) = =0 (e M a (L)) ~ 5 (D) a(0)

(0% (L) = /dleLQdLS(S (L — L1 — L2 — Lg)
xc (Lo + Ls)c(Ls) f (L1) f (L2) f (Ls)

Assuming o (00) = 0 and « (0) is finite, we are able to get

[Q,G]V) = (x — xT) |¥).
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Solutions with K, B

In summary, it is possible to show F = g% (I|V (i) | W), even for the

solutions with K, B provided o (c0) = 0 and « (0) is finite.

(6% (L) = /dleLgdL36 (L — L1 — L2 — Lg)

XC(LQ JrLs)C(L:S)f(Ll)f (LQ)f(L3)

These conditions for a (L) are concerned with the regularity of the
function F'(K) for K ~ 0, K ~ oc.
o If Q|T)+ |V« W) =|T') # 0, we obtain
1 ) 1 1
E= g7<I|V(Z)|W) - 972<1|X‘F>+972<g\1/|1—\>
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§5 Conclusions

@ We have given a proof of
1 ,
E= 97<1|V(Z)|‘1’>

for a classical solution ¥ of Witten's SFT.

@ The gauge invariant observables seem to have enough
information to reproduce energy, boundary state, etc..

@ This identity can be applied to BMT, Murata-Schnabl
solutions.

@ It is straightforward to generalize the proof to modified cubic
SSFT.

@ Masuda solution?
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Murata-Schnabl solutions

In order to calculate the gauge invariant observables

K +¢

U U, = (K B—F——
— 0, (K +e€)c 1—F2(K—|—e)c

The energy with this regularization can be calculated by our

method:
1 /N-1
EF=—-|—k —
92< 2m? RN>

s { 855 2oheo. RIETRI N 2R ((27”)'““ (- 27”)k+z) , (N>1),
N =

! k
55 Lico | k!(k+2()}(—]\1]\l)—1—k)! ((27”)k+2 (—2mi) +2) , (N<0).
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Sliver frame, wedge states

1 : E
¥
1 i >
= tan —

§ 0

dz

K = [ =

/271'2 (2)
e (L-DK o~ LK
1 L
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