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String field theory (SFT)

String field

String field action

S = ΦKΦ+ Φ3 + · · ·

A nonperturbative definition of string theory

We would like to discuss dynamical problems by SFT.
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Amplitudes of superstring field theory

S = ΦKΦ+ Φ3 + · · ·

Amplitudes can be calculated perturbatively.

The results should coincide with the one from the first quantized theory.
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Divergences of the Feynman amplitudes

1. Infrared divergences (physical)

2. Spurious singularities (unphysical)

No ultraviolet divergences

A valid superstring field theory should be free of the divergences of the

second kind.
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Light-cone gauge superstring field theory

Thise divergences can be regularized by formulating the theory in noncritical

dimensions.

In this talk, I would like to explain

how the regularization works

computation of Fayet-Iliopoulos D terms using the formulation

Based on collaborations with Baba and Murakami and N. I. in progress
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Divergences of Feynman amplitudes for superstrings

§1 Divergences of Feynman amplitudes for superstrings

A =

∫
M

∏
K

dtK

[⟨
V1 · · ·VN

∏
α

∫
Cα

b
∏
i

X (zi)

⟩
+ · · ·

]
(t)

M : moduli space of the Riemann surface

The integrand becomes singular at

1 t = t0 ∈ ∂M: infrared divergences

2 t = t0 ̸∈ ∂M : spurious singularities

In the 1-st quantized formalism, this expression is derived by fixing the local

symmetries on the worldsheet. GO

The integrand diverges at the point where the gauge slice is not transverse to

the gauge orbit. GO
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Divergences of Feynman amplitudes for superstrings

Spurious singularities in 1-st quantized formalism

A =

∫
M

∏
K

dtK

[⟨
V1 · · ·VN

∏
α

∫
Cα

b
∏
i

X (zi (t))

⟩
+ · · ·

]
(t)

In practice, it is difficult to find a goood gauge slice everywhere in M. One

practical way to get such a slice is to divide M into patches. (Sen-Witten)

It is possible to find a good slice in each patch.

One can get and expression of A with contributions from the boundaries of the

patches.
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Divergences of Feynman amplitudes for superstrings

Spurious singularities in SFT

SFT amplitudes coincide with those from the 1-st quantized approach.

An SFT corresponds to a specific choice of the gauge slice.

The Feynman rule of SFT should yield a good gauge slice for any Riemann

surface.
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Divergences of Feynman amplitudes for superstrings

Sen’s SFT for superstrings

S =
1

g2s

[
−1

2

⟨
Ψ̃
∣∣∣ c−0 QBG ∣∣∣Ψ̃⟩

+
⟨
Ψ̃
∣∣∣ c−0 QB ∣∣∣Ψ⟩

+

∞∑
n=1

{{Ψn}}

]

master action in BV formalism

infinitely many interaction terms of order ℏk (k = 0, 1, 2, · · · )

One can arrange these interaction terms so that the amplitudes are free of

spurious singularities order by order in ℏ.
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Light-cone gauge superstring field theory

§2 Light-cone gauge superstring field theory

LC gauge string fieldX
+ = t

ψ+ = 0

−→ Φ
[
t, α,Xi(σ), ψi (σ) , λA (σ)

]

Lorentz invariance, supersymmetry, etc. are not manifest

Simple SFT action GO

Tractable spurious singularities GO

We should deal with only the contact term divergences
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Light-cone gauge superstring field theory

Dimensional regularization

LC SFT can be formulated in any spacetime dimensions.

S =

∫ [
1

2
Φ · (iα∂t −H)Φ +

gs

3
Φ · (Φ ∗ Φ)

]

A =
∑

spin structure

∫ ∏
K

dtK

⟨
V LC
1 · · ·V LC

N

2g−2+N∏
I=1

[(
∂2ρ

)− 3
4 TLC

F (zI)

]⟩
Xi,ψi

e−
d−2
8

Γ

e−Γ diverges when the LC diagram becomes singular. GO

Taking d to be large and negative, divergences are regularized.

iα∂t −H ∼ p2 −m2 − 10−d
8 : 10−d

8 works as an infrared regulator

Chiral fermions are dealt with by considering a linear dilaton background.

GO
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Light-cone gauge superstring field theory

Q2 ∼ 10−d
8 → 0

A =
∑

spin structure

∫ ∏
K

dtK

⟨
V LC
1 · · ·V LC

N

2g−2+N∏
I=1

[(
∂2ρ

)− 3
4 TLC

F (zI)

]⟩
LC

e−(1−Q2)Γ

=
∑

spin structure

∫
M

∏
K

dtK

⟨
V1 · · ·VN

∏
α

∫
CK

b
∏
I

X (zI)

⟩

The amplitudes can be expressed using a conformal gauge worldsheet theory

with Q2
B = 0. GO

The expression of A is BRST invariant. → the regularization preserves the

gauge invariance

The conformal gauge expression coincides with the one from the 1-st

quantized formalism in the limit Q→ 0, if the latter is (absolutely)

convergent.
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Computation of Fayet-Iliopoulos D terms

§3 Computation of Fayet-Iliopoulos D terms

SO(32) hetertic string theory compactified on a CY-manifold with Ai = ωi

With anomalous U (1)’s, FI D terms appear at one loop

V = −1

2
D2 +D

(
cg2s − |ϕ|2

)
+ · · ·

→ 1

2

(
cg2s − |ϕ|2

)2

+ · · ·

The supersymmetric vacuum is at |ϕ|2 = cg2s

c > 0 can be obtained by calculating the tachyonic mass m2 = −cg2s of ϕ at

the classical vacuum ϕ = 0. (Dine-Seiberg-Witten, Dine-Ichinose-Seiberg,

Atick-Dixon-Sen, Green-Seiberg, ..., Witten, Sen)
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Computation of Fayet-Iliopoulos D terms

Computation of the m2

One loop mass correction

Σ
(
p
2
)∣∣∣

p2=0
∼

∫
d
2
τd

2
z
⟨
V

(0)
(z, z̄)V

(0)
(0, 0)

⟩∣∣∣∣
p2=0

∼
∫
d
2
τd

2
z

[
p
2 |z|−2−2p2 ⟨VD (0, 0)⟩

]∣∣∣∣
p2=0

∼
∫
d
2
τ ⟨VD (0, 0)⟩

Sen’s SFT reproduces this result.
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Computation of Fayet-Iliopoulos D terms

Computation of the m2 by LC SFT

With the infrared regulator Q2 ∼ 10−d
8 → 0

Σ
(
p
2
)∣∣∣

p2=0
∼

∫
d
2
τd

2
z
⟨
V

(0)
(z, z̄)V

(0)
(0, 0)

⟩∣∣∣∣
p2=0

∼
∫
d
2
τd

2
z

[
|z|−3Q2

z̄
−1

⟨
ψ

−
(z)ψ

−
(0)

⟩
⟨VD (0, 0)⟩

]∣∣∣∣
p2=0

∼
∫
d
2
τ ⟨VD (0, 0)⟩ f (τ)

We have not checked if this agrees with the known result.
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Conclusions and discussions

§4 Conclusions and discussions

In order to regularize the divergences of the Feynman amplitudes, we

formulate light-cone gauge superstring field theory in noncritical dimensions.

Taking d→ 10, we obtain the amplitudes which coincide with those from the

first quantized approach.

FI D terms can be calculated using the formalism.
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Conclusions and discussions

1-st quantized amplitudes BACK

A =

∫
[dgmndχadX

µdψµ]

superrep.× superWeyl
e
−I
V1 · · ·VN

=

∫ ∏
K

dtK
[
dX

µ
dbdcdβdγ

]
e
−Ig.f.

[
V1 · · ·VN

∏
K

∫
CK

b
∏
i

X (zi) + · · ·
]

=

∫
M

∏
K

dtK

[⟨
V1 · · ·VN

∏
α

∫
CK

b
∏
i

X (zi)

⟩
+ · · ·

]

ϵ
m ←→ b, c (reparametrization)

ϵ
a ←→ β, γ (supersymmetry)

X (z) = δ (β)TF + · · ·

picture changing operator
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Conclusions and discussions

Gauge slice

When the gauge slice is not transverse to the gauge orbit at some point on

the gauge slice, the relevant ghost have zero modes and

△FP = 0 if the ghost is Grassmann odd

△FP = ∞ if the ghost is Grassmann even

The integrand of the Feynman amplitude diverges when the gauge slice is

bad and γ has zero modes.
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Conclusions and discussions

Singularities BACK

A =

∫
M

∏
α

dtα

[⟨
V1 · · ·VN

∏
α

∫
Cα

b
∏
i

X (zi)

⟩
+ · · ·

]
(t)

⟨∏
i

δ (β) (zi)
∏
r

δ (γ) (Zr)

⟩

∝
1

ϑ [α] (
∑
zi −

∑
Zr − 2△)

·
∏

i,r E (zi, Zr)∏
i>j E (zi, zj)

∏
r>s E (Zr, Zs)

·
∏

r σ (Zr)
2∏

i σ (zi)
2

Two kinds of singularities

1 zi = zj : contact term divergence

2 ϑ [α] (
∑
zi −

∑
Zr − 2△) = 0

The second one is harder to deal with. (global condition)
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Conclusions and discussions

LC gauge SFT action BACK

S =

∫ [
1

2
Φ · (iα∂t −H)Φ +

gs

3
Φ · (Φ ∗ Φ)

]

String field Φ
[
t, α,Xi(σ), ψi (σ)

]
t = x

+

α = 2p
+

propagator and vertex
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Conclusions and discussions

Feynman amplitudes for LC gauge SFT

A =
∑

spin structure

∫ ∏
K

dtK

⟨
V LC
1 · · ·V LC

N

∏
I

[(
∂2ρ

)− 3
4 TLC

F (zI)

]⟩
Xi,ψi

e−Γ

=
∑

spin structure

∫
M

∏
K

dtK

⟨
V1 (Z1) · · ·VN (ZN )

∏
K

∫
CK

b
∏
I

X (zI)

⟩

A naturally defined metric on LC diagram ds2 = dρdρ̄

e−Γ: Weyl anomaly
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Conclusions and discussions

Spurious singularities in LC SFT BACK

A =
∑

spin structure

∫ ∏
K

dtK

⟨
V LC
1 · · ·V LC

N

∏
I

[(
∂2ρ

)− 3
4 TLC

F (zI)

]⟩
Xi,ψi

e−Γ

=
∑

spin structure

∫
M

∏
K

dtK

[⟨
V1 (Z1) · · ·VN (ZN )

∏
K

∫
CK

b
∏
I

X (zI)

⟩
+ · · ·

]

1 zI = zJ

2 ϑ [α] (
∑
zI −

∑
Zr − 2△) = 0

No singularity of the second type.

No β, γ on the worldsheet (1-st line)

The ϑ is canceled by the one from the ψ± partition function (2-nd line)
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Conclusions and discussions

Singular LC diagrams BACK

Contact term

Infinitely thin cylinder

Tiny neck

e−Γ becomes singular when combinations of these phenomena happen.

These correspond to contact term and infrared divergences.
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Conclusions and discussions

Problems with chiral fermions BACK

Naive dimensional regularization has problems with chiral fermions. We can
avoid them by considering the theory in linear dilaton background
Φ = −iQX1, instead of changing the spacetime dimensions

S =
1

16π

∫
d2z

√
ĝ
(
ĝab∂aX

1∂bX
1 − 2iQR̂X1 + · · ·

)

Doing so does not change the number of ψµ ∼ γµ

Q2 ∼ 10−d
8

We can change Q continuously.

This background breaks unitarity.
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Conclusions and discussions

X± CFT

The worldsheet theory for X±, ψ±

S± = −
1

2π

∫
d2z∂X+∂̄X− −

d− 10

32π

∫
d2z

(
∂χ∂̄χ+ ĝzz̄R̂χ

)
+ · · ·

χ ≡ ln
(
−4∂X+∂̄X+

)
− ln (2ĝzz̄)

This theory can be formulated in the case ⟨∂mX+⟩ ̸= 0.

In the case of the LC gauge amplitudes, we always have∏
e−ip

+
r X

−
(p+r ̸= 0) and ⟨∂mX+⟩ ̸= 0.
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Conclusions and discussions

X± CFT BACK

S± = −
1

2π

∫
d2z∂X+∂̄X− −

d− 10

32π

∫
d2z

(
∂χ∂̄χ+ ĝzz̄R̂χ

)
+ · · ·

T (z) = : ∂X−(z)∂X+(z) : −
d− 10

8

[
∂3X+

∂X+
−

3

2

(
∂2X+

∂X+

)2
]

This theory is exactly solvable and turns out to be a superconformal field

theory with c = 3 + 3
2 (10− d).

The worldsheet theory has a nilpotent BRST charge

X± Xi ghosts

c = 3 + 3
2 (10− d) + 3

2 (d− 2) − 15 = 0
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