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String field theory (SFT)

String field

TN - Bfa(o)]

xH(o)

String field action
S=3KPd+P3+...

@ A nonperturbative definition of string theory

@ We would like to discuss dynamical problems by SFT.

2/27




Amplitudes of superstring field theory

S=0KP+ 3+ ...

t

propagator 1 vertex

@ Amplitudes can be calculated perturbatively.

@ The results should coincide with the one from the first quantized theory.

>

worldsheet
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Divergences of the Feynman amplitudes

1. Infrared divergences (physical)

2. Spurious singularities (unphysical)

@ No ultraviolet divergences

o A valid superstring field theory should be free of the divergences of the

second kind.
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Light-cone gauge superstring field theory

Thise divergences can be regularized by formulating the theory in noncritical

dimensions.

In this talk, | would like to explain
@ how the regularization works

@ computation of Fayet-lliopoulos D terms using the formulation

Based on collaborations with Baba and Murakami and N. I. in progress
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Outline

© Divergences of Feynman amplitudes for superstrings

© Light-cone gauge superstring field theory

© Computation of Fayet-lliopoulos D terms

@ Conclusions and discussions
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Divergences of Feynman amplitudes for superstrings

§1 Divergences of Feynman amplitudes for superstrings

4= Ll QoI oy Jo

M : moduli space of the Riemann surface

The integrand becomes singular at

Q t =ty € OM: infrared divergences

© t =ty & OM : spurious singularities

@ In the 1-st quantized formalism, this expression is derived by fixing the local
symmetries on the worldsheet. @D
@ The integrand diverges at the point where the gauge slice is not transverse to

the gauge orbit. €D
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Divergences of Feynman amplitudes for superstrings

Spurious singularities in 1-st quantized formalism

A:/MgdtK |:<V1--~VN1:[/CQbl:[X(zi(t))>+<-} (t)

@ In practice, it is difficult to find a goood gauge slice everywhere in M. One
practical way to get such a slice is to divide M into patches.
e It is possible to find a good slice in each patch.
e One can get and expression of A with contributions from the boundaries of the

patches.
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Divergences of Feynman amplitudes for superstrings

Spurious singularities in SFT

i ar \ /

@ SFT amplitudes coincide with those from the 1-st quantized approach.
@ An SFT corresponds to a specific choice of the gauge slice.

@ The Feynman rule of SFT should yield a good gauge slice for any Riemann
surface.

9/27




Divergences of Feynman amplitudes for superstrings

Sen's SFT for superstrings

—% <\i/’ co @BY ’\if> + <\i/

Qe |w) + Yo g
n=1

1
827
9s

@ master action in BV formalism
e infinitely many interaction terms of order A* (k=0,1,2,---)
@ One can arrange these interaction terms so that the amplitudes are free of

spurious singularities order by order in A.
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Light-cone gauge superstring field theory

§2 Light-cone gauge superstring field theory

LC gauge string field
Xt =t , .
— P I:t7a7XZ(U)7¢Z (0)’>‘A (0)]
Pt =0

@ Lorentz invariance, supersymmetry, etc. are not manifest

@ Simple SFT action €D
@ Tractable spurious singularities €D

e We should deal with only the contact term divergences
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Light-cone gauge superstring field theory

Dimensional regularization

LC SFT can be formulated in any spacetime dimensions.

S:/[%<I>~(ia8t—H)<I>+g§S<I>-(<I>*<I>)}

29—2+N 3 i
A= > [Tlaw <VILC---VJ%C I1 [(B%)UT%C(ZI)D e T
spin structure K I=1 Xt

e ¢ 1 diverges when the LC diagram becomes singular. @D

@ Taking d to be large and negative, divergences are regularized.

2 10—d. 10—d
g8 8

0 iad, —H~p>—m works as an infrared regulator

Chiral fermions are dealt with by considering a linear dilaton background.

12 /27



Light-cone gauge superstring field theory

Q2 ~ 10—d -0

8
2g—24+N g .
A= ¥ /HdtK <V1LC-~~V}¢C I1 {(8%)7%%0 (z1>}> e (1=a@%!
spin structure K I=1 LC

> /Ml;IdtK<V1---VN];I/CKb1;[X(zI)>

spin structure

@ The amplitudes can be expressed using a conformal gauge worldsheet theory
with Q% = 0. D

@ The expression of A is BRST invariant. — the regularization preserves the
gauge invariance

@ The conformal gauge expression coincides with the one from the 1-st
quantized formalism in the limit @ — 0, if the latter is (absolutely)

convergent.
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C ion of Fayet-lliopoulos D terms

§3 Computation of Fayet-lliopoulos D terms

SO(32) hetertic string theory compactified on a CY-manifold with 4; = w;

With anomalous U (1)'s, FI D terms appear at one loop

1
v = —§D2—|—D<cg§—|¢|2)+---

1 2
o Lo 1oP)" 4o

@ The supersymmetric vacuum is at |¢\2 = cg?

@ ¢ > 0 can be obtained by calculating the tachyonic mass m? = —cg? of ¢ at

the classical vacuum ¢ = 0.
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© ion of Fayet-lliopoulos D terms

Computation of the m?

c=o-

@ One loop mass correction

x(pQ)’pzzo ~ /d2~rd2z<V(0)(z,E)V(O)(O,O)>’p2=O

[ o 7 v 00

p2=0

~ [ drws @0

@ Sen's SFT reproduces this result.
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C ion of Fayet-lliopoulos D terms

Computation of the m? by LC SFT

=

e With the infrared regulator Q2 ~ 1%=4 —

z(p2)‘p2:0 ~ /d27d22<v<°)(z,z)v(0’(0,0)>L2:0

~ [ [l (6 (e @) Vb (0,0)]

p2=0

~ [ o))
@ We have not checked if this agrees with the known result.
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Conclusi and di

84 Conclusions and discussions

@ In order to regularize the divergences of the Feynman amplitudes, we

formulate light-cone gauge superstring field theory in noncritical dimensions.

e Taking d — 10, we obtain the amplitudes which coincide with those from the

first quantized approach.

@ FI D terms can be calculated using the formalism.
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Conclusi and di

1-st quantized amplitudes @z

A / [dgmndxadX"dyp*] _;
= e
superrep. X superWeyl

/HdtK [dX"dbdedBdy] e e - [v1-~-vNH/ bHX(zi)+-<-]
K K 'Cx i
- e o]

(gmru Xa)
srep. x sWeyl

1 VN

€ +— b, c (reparametrization)
e’ <+— B, (supersymmetry)
(gm"r(t7 C)7 Xa(t7 C))
X(z) = 6BTr+---

picture changing operator
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Conclusi and di

Gauge slice

gauge trans. ¢(=) gauge trans. (@)

gauge slice gauge slice

@ When the gauge slice is not transverse to the gauge orbit at some point on
the gauge slice, the relevant ghost have zero modes and
e App = 0 if the ghost is Grassmann odd
o App = oo if the ghost is Grassmann even
@ The integrand of the Feynman amplitude diverges when the gauge slice is

bad and « has zero modes.
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Conclusi and di

Singularities @z

A=/M1:[dta Kvl...le:[/cablj[x(zi)>+~~~} (t)

<H 58 16 <zr>>

) . | L. 2 (0 Z0) Lo’
Y] (3 zi — > Z, —24) Hi>j E (zi,zj) H7,>S E(Z.,Zs) Tl;o (21)?

@ Two kinds of singularities
© =z, = z;: contact term divergence
Q V] >z—->2Z —20)=0
@ The second one is harder to deal with. (global condition)
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Sz/[%<I>~(ia8t—H)<I>+%S<I>-(<I>*<I>)

e String field ® [t, a, X*(0),7" (0)]

2p+
@ propagator and vertex

«O>r «Fr o«

(PN G4
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Conclusi and di

Feynman amplitudes for LC gauge SFT

A = > /HdtK <V1LC 000 73S 1:[ {(a%)‘% T (z,)D e’

spin structure K X1t

— 3 /HdtK<V1(Z1 VN(ZN)H/ bHX(ZI>

spin structure

J M E% —

@ A naturally defined metric on LC diagram ds? = dpdp

e ¢ I': Weyl anomaly
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Conclusi and di:

Spurious singularities in LC SFT @z

4= s [Mae(wevieTl @ taee]) o

spin structure K Xt

- / ] Kvl(z1 VN(ZN)H/ bHX(z1>

spin structure

Q 21 =2y
Q@ IOz —>7Z.—2/N)=0

@ No singularity of the second type.

e No f,~ on the worldsheet (1-st line)

o The ¥ is canceled by the one from the ¥ partition function (2-nd line)
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and di

Singular LC diagrams @z

e ¢~ becomes singular when combinations of these phenomena happen.

@ These correspond to contact term and infrared divergences.

(PN G4
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Conclusi and di

Problems with chiral fermions @z

o Naive dimensional regularization has problems with chiral fermions. We can
avoid them by considering the theory in linear dilaton background
® = —iQX", instead of changing the spacetime dimensions

_ L (e (gabaaxlabxl — 2iQRX* + - )
167

Doing so does not change the number of * ~ ~*
o Q% 10=d
e We can change @ continuously.

e This background breaks unitarity.
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Conclusi and di

X= CFT

The worldsheet theory for X+, ¢+

d—10 [ , .
— /d 2 (8X3X+gzzRX) ocs

x =In (—40X10XT) — In(2§.z)

Sy = fi/d2zBX+5X_ =
27

@ This theory can be formulated in the case (9,, X ") # 0.

@ In the case of the LC gauge amplitudes, we always have

[Te ™" X" (pf #0) and (9, XT) #0.
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Conclusi and di

X+ CFT ax>

O [ e d=10 [, L
G = —%/d 20X+6X —W/dz(axax-ﬁ-gzz}?x)—l—u-
d—10 [93x+ 3 /92Xx+)\2
T = 90X (2)0XT(2): — ==
=) (2)0X7(2) 8 [6X+ 2 (6X+ )

@ This theory is exactly solvable and turns out to be a superconformal field
theory with ¢ = 3+ 2 (10 — d).

@ The worldsheet theory has a nilpotent BRST charge

X+ Xt ghosts
c = 3+3(10—-d) + 3(@-2 - 15 =0
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