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e On punctured Riemann surfaces (~worldsheets for string amplitudes), one
can define quadratic differentials called Strebel differentials.

e Via Strebel differentials, to any punctured Riemann surface one can
associate a critical graph (~local interaction vertex of strings).

critical graph

e We propose an SFT (for closed bosonic strings) based on such descriptions
of Riemann surfaces. (PTEP 2024 (2024) 7, 073B02)
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e We need to employ the Fokker-Planck formalism to construct such a
theory.

e The Fokker-Planck Hamiltonian is given by
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e The theory given in this talk looks very weird from the physical point of

view.

e Unlike the conventional SFT, our theory may not give a formulation from
which important physical properties of string theory (unitarity, UV
finiteness, background independence etc.) can easily be derived.

e The theory should be considered as a machinery for computing correlation
functions of string theory.

e The method used here may be useful in studying the vertices of
conventional SFTs.
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1. Strebel differentials

e On a punctured Riemann surface let us consider a quadratic differential
#(z)dz* such that

® near punctures (z ~ 2Zaq (a = 1,---n))

La\?> d22
dz? ~ — (J) _ %
¢(2)dz 2] (2-z2a)?
with L, > 0 and holomorphic for z # z,
e A locally flat metric
ds® = |¢(2)|dzdz = dwdw

w:fzdz'\/Wz’)

6/30



Strebel’s theorem

e Given a punctured Riemann surface (2g — 2 + n > 0) and positive numbers
Ly, Ly, there exists the unique quadratic differential ¢(z)dz* (Strebel
differential) such that

2
o for z ~ 24, ¢(z)dz2~—(]2“7‘;) %
e holomorphic for z # z,4 '

e with the metric

ds® = |¢(2)|dzdz = dwdd

w:fzdz'\/m

the surface looks like
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Strebel differentials

critical graph

Gym,L

e To any punctured Riemann surface, one can associate a graph called
critical graph.

e Moduli spaces of punctured Riemann surfaces can be parametrized by the
lengths of the edges of the critical graphs (combinatorial moduli space
Mgun(L)).

e Such a description plays important roles in

e Kontsevich's proof of Witten conjecture

e studying gauge/string duality (Gopakumar, Razamat, ...,
Gopakumar-Mazenc, Gopakumar-Koushik-Komatsu-Mazenc-Sarkar,...)
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Strebel differentials and string field theory

e The critical graphs look like local interaction vertices of closed strings.

e Strebel's theorem implies that any punctured Riemann surface can be
described by such an interaction vertex.

e Such a description is not compatible with conventional SFT.

propagator

e Strebel differentials were used to construct the interaction vertices of a
closed bosonic string field theory in Saadi-Zwiebach,
Kugo-Kunitomo-Suehiro.
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Strebel differentials and string field theory

<>
critical graph
Gg,n?L
A @~ [ (GomalBog-ssanlit) -+ fin)
Mg n(L)

e If Strebel differentials are really important in understanding gauge/string
duality, it may be worthwhile to construct an SFT from which the
amplitudes in this form are reproduced*.

e string fields will be labeled by (i, L) (0 < L < o)

e How can one construct such an SFT?
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2. Pants decomposition

critical graph —

e The critical graphs can be decomposed into three string vertices.
e This coincides with the “pants decomposition” defined by Andersen et al..

e We may be able to construct a theory with

propagator vertices

0 type
[Ly = La| < Ly < L1+ Lo

3

3
dumbbell type
Li+Ly<Lg
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propagator vertices

0 type
|Ly — Ly| < Ly < Ly + Ly

3
3
dumbbell type
Li+ Ly <Ls

e We may be able to construct an SFT action starting from these:
1 ~ i i
Sle] = 3% [ dLe'(We' W)

+% > f d*LViyigiy (L1, L2, L) ™ (L1)9™ (L2)$™ (Ls)
11,%2,13
+...
--- are fixed so that the amplitudes are reproduced correctly.
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Tree level four point amplitude

[
0

e This integral diverges because the moduli space is covered infinitely many
times.

e The pants decomposition of a critical graph is not unique.
e Different decompositions are transformed to each other by action of the
mapping class group.

a8 4D
> P

4
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The action is not well-defined

Sl = 53 [ aLs s
+80 [ @ LViizia (L, Loy o)™ (1n)6™ (L2)6™ (La)

6 11,12,%3
+...

e --- should include divergent counter terms to make the amplitude finite.

e This happens for almost all the amplitudes and S'[¢] is not well-defined.
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3. Schwinger-Dyson equation for strings




3. Schwinger-Dyson equation for strings

N a \ a—1

L. =@ <

e Na+1

e Although action is ill-defined, one can derive an SD equation.
(Bg-3+n>0, (g,n) = (1,1))

e Given a critical graph Gy ,, 1., we decompose it into a three string vertex
one of whose legs is the first external line, and the rest.

e In our case, it is impossible to uniquely pin down such a vertex, but it is
possible to define a finite set of such vertices canonically.

e Making a weighted sum of the decompositions corresponding to these
vertices, we get the right hand side of the above.
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Three string vertices

2 GgnL Da

e 0D, consists of edges e, (k=1,---, K), whose lengths are denoted by [j.
They satisfy Y5 I, = L.
e 0D1,0D, and ey, specify a three string vertex uniquely.

Uy
1 — Gg,n,L Z —k {
1

k=1
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SD equation

e The configuration falls into one of the following six cases (Bennett et al.)

Case 1 Case 2 Case 3
"
b, G D, D
" 4
ey

ey

Case 4 Case 5 Case 6
D, Dy
[ % s

G/gl B P — Gm,m,la

[CARTIRE Y
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SD equation

< Litbe [ 4L, —x - .
ALy = Y e, / de 22t Z T ynio () L AT (g Ly s Dy L
P> [\Ll—f-a\ 2L, il Lo @) gt (0 L )
‘La-Li [ L .
+0(La — Ln) / dz 72 Vit (L, Lo, @) AY3 9 @, Loy Loy L)
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Ly Ly~
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Case 1

Case 2

Case 3 + Case 4

Case 5

Case 6
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N a \ a—1

L. =@ <

Mg.n Na+1

e We have employed the combinatorial Fenchel-Nielsen coordinates
(Is;7s) (s=1,-+,3g—3+n) (Andersen et al.) to describe M, ,,(L).
e [;: the lengths of the nonperipheral boundaries of the pairs of pants
® T4: twist parameters

e We should take care of the b-ghost insertions.

e Although any critical graph can be decomposed into pairs of pants, a
graph made by gluing pairs of pants may not be a critical graph.
e Some twist parameters do not correspond to critical graphs. (nonadmissible
twists)
e Fortunately, nonadmissible twists do not appear on the right hand side.
(Andersen et al.).
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a—1

PN )
L. =~ < <

/ 7 Na+1

Introducing a convenient notation, we get

n a
IyI I11,J Ilgefge
Al = E EEB Lha GJ[A 2P

g,n g,n—1
a=2

1 I17'I5-1 ET,Ts Iz 'z
+ 70 1 G.]]GJ’[’ A . 2 n + 12 A 1 A ’ 2'
2 g-1,n+1 stazb:Ie (nl _ 1)!(7’L2 _ 1)| gi,n1“°g2,n2

o [ < (i,a, L)
e i: labels for states of worldsheet theory
e « = +: labels for b-ghost insertions*

¥y =xlv; =3 3 /OmdLX(i,a,L)Y(i,a,L)

i a=*
Gr1, = o(L1 - L2)6i1,i2 [501#60&2,* + 56¥1r5027+(’1)|%1 |]
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4. The Fokker-Planck formalism




4. The Fokker-Planck formalism

e In our theory, the Schwinger-Dyson equation can be derived but the action
will be ill-defined.

e We can use the Fokker-Planck formalism to describe the theory.

Euclidean field theory

[ dele 5N p(z1)p(n)
[Tdgle504]

(¢(z1)--¢(zn)) =

e the FP formalism

($(@1)-¢(wn)) = lim (0l 7 §(@1)-+-G(an)[0)

[#(2), ()] = 8(x - ), [#, %] = [$,¢] = 0
(Olé(x) = #t(2)/0) = 0

tten =~ | s (10) - 5225181 (@)
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The FP Hamiltonian and SD equation

e The FP Hamiltonian

fiee = [ o (#(0) - 5525101) @)
1l

T(x)

e SD equation for ¢ [/] = f[dgf)]e_s["’]*[ daJ(@)¢(=)

0 = /[dd%@)<e*5[¢l+fde<m>¢(m>)

(J(‘”) ) LJiw)D e
Ml

T {J(m), ﬁ(r)]

o T'(z) satisfies

Fa)el @Iy - I:J(w)v Mi )]e/ 421(2)8(2) )
ap

This fact gives a quick way to derive FP Hamiltonian from SD equation.
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The FP formalism for strings

e The generating functional

oo

2g-2+n 1 Iy--In
9s ﬁjfn'"']flAg,n
n=1 uz

=
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e The SD equation for W[.J]

0Jk
§ 5 , ,
I = O et il
T []K, 071\] Lé,], G (=)t Ly
1 iy 82
—gs e G ———
QQEV 1"k G K OJk”(UKr
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K
yhil  _ (L1 = Ly = L3){Go3.(Ly.Ls.Ly) | Ba, Be, B 951052 )al@i?)s Lo+ Ls < Ln
0 Li<Ly+Ls’
0 Li+Ly<Ls

whixls (L1 + Lz — L3){(Go 3,(Ly, L2, Ly) | Ba, Ba, B, |95 1les
)2}

min(Ly, Lo)(Go3.(Ly La.Ls) | B, B3, Bag 951

a1 Doz Pag Il

>2\vm 3 |Li—Lao| <Ly <L+ Lz .
2195 )s L; < |Li — Ls|
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The FP formalism for strings

e Operators and states

[ﬁl»g’K] = 51K7
[fr.4x] = [67,6"]1=0,
(0¢" = #:o)=o0,
e The FP Hamiltonian
Hpp = T'#;

A o 1'r 2T A
= —LaapG ~ + Lo 7r

1 '’ AR AR
gsv GI”K”GI’K’(b ¢ Tr

II/I,I ,\KII N R
—gsW Grigr¢™ wpfr,

e One can prove

"] - Lim (0l "HFP 1% |0)

T—00

perturbatively using

a 2K 1) 2K
T7e’x " 0y = 7 [JK, S ] ’x%% 0)
2%

24 /30



BRST symmetry

e The correlation functions are BRST invariant

eV TILTO(O|677FIFP eJ19! |0)

lim (0”@ = Ql0) =0
o Hpp itself is not BRST invariant

(@ Hre] = [Q.T'7i]
]
lim (0|6ngFP [QJH] = Tli_)r{.lo(O\efTﬁFPTI =0
e BRST invariant Hamiltonian can be obtained by introducing auxiliary fields
Hyp — Hep + [Q,TI] /\? + TI)\}F

e This modification does not change the correlation functions.
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5. Conclusions and outlook

e We have constructed an SFT for closed bosonic strings based on the
Strebel differentials via the Fokker-Planck formalism.

ﬁFp = —Lﬁ'[ﬁ'IIGI,I + LQEIﬁ'I
1y “K" K
—EQSV GrignGr ™ ¢ 71

IIIIH K" N N
-gsW Grgr¢” Tpfr,

e gauge fixed version
e Superstrings?

e Implication for conventional SFT?
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Outlook

hyperbolic FP<—— Firat-Valdes-Meller <————— Costello-Zwiebach

long string limit

combinatorial FP «——— ? -— ?
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Amplitudes*

’Ll ’Ln (L / G ,nyL
)~ Mgon(L ) .

e Since M, (L) is homeomorphic to My, A4*" (L) coincide with the
on-shell amplitudes when [i,) are on-shell.

Bgg—6+2nli1) |in)

e The integration over L ~ 0O region yields the s-channel poles.

e There are observables involving integration over the length. They give the
nonamputated correlation functions.
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b-ghost insertions*

-l

b(dr) = bs, (Or) +bs, (1)
b(p) = ~2mibg

e We put b(9p)bs, (0r) on S1 and b(9p)bs,(dr) on Sa.
e String states with these insertions are labeled by a = —, and those with no

insertions are labeled by a = +.
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