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Superstring theory

e Superstring theory has been around for 40-50 years.

e In any theory of physics, there exists an equation (or action) from which
everything can be deduced in principle.

Schrédinger equation ih%q/; = Hy

Einstein equation R, — % g R = 8nG T,

-

3
S = CG/d‘lx\ﬁ—gR

167

e What is “the equation” (or action) for superstring theory?

e Unfortunately, a clear answer to this question is not known yet.
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What is the equation or action?

Action Feynman diagram

5= /I(l‘.z {—%F,,,,F"” (B, — M) — epypA,| ———— > <
? — H

e An honest approach to this question is given by string field theory (SFT).
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S= /(1/111“, [*iﬁ},,/l’“" +(iy" 0, —m)p — mﬁj«“wAM] S=0oKd —}—gj

propagator |

e Once we are able to identify the propagators and vertices in the Feynman
diagrams of string theory, we can construct the action.
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T vertex

{ | propagator i |

e The amplitudes in string theory are expressed by Feynman diagrams =
worldsheets~Riemann surfaces
e In an SFT, the worldsheets appear by combining propagators and vertices.

e In order to construct an SFT, we should define a rule to decompose all the
worldsheets into propagators and vertices systematically.

e In general, we need infinitely many vertices to do so.

S=0K®+3>+ 0+ + hD + -
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Status of SFT

e Bosonic strings

e There exist SFT's with actions as simple as
S=dKD+ 3

o Light-cone gauge SFT(Kaku-Kikkawa), (a = p*) HIKKO
(Hata-Itoh-Kugo-Kunitomo-Ogawa), covariantized light-cone
e Witten's SFT

e Superstrings

e If one tries to formulate SFT for superstrings generalizing the theories
above, one runs into the “spurious singularity” problem.
e Sen constructed an action avoiding this problem with the form

S=PK®+d%+ %+ ...+ hD + -

The terms in the action are not known in closed forms in general.

e Most of the string theorists believe that superstring theory can be
described by some gauge theories or matrix models, assuming AdS/CFT
correspondence or other dualities.
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This talk

e It may be helpful to find out yet another rule to decompose Riemann

surfaces such that the SFT becomes simple.
S=0K® + @’

e Having such a theory would be useful if one tries to prove AdS/CFT
correspondence.

e In this talk, we would like to construct an SFT for bosonic strings based
on the so-called pants decomposition of hyperbolic surfaces.
e It is known that there exists a problem in constructing such a theory.
e We overcome the problem using the Mirzakhani-McShane identity. PTEP
023B05(2023)
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Plan of the talk

1. Pants decomposition

2. Mirzakhani recursion

3. A recursion relation for the off-shell amplitudes of closed bosonic strings
4. The Fokker-Planck formalism

5. BRST invariant formulation

6. Conclusions
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1. Pants decomposition



1. Pants decomposition

a pair of pants

% V4 )

N AN

e A Riemann surface with 2g — 2+ n > 0 admits a unique hyperbolic metric
such that the boundaries are geodesics.
e It can be decomposed into pairs of pants whose boundaries are geodesics.

e The shape of a pair of pants is uniquely fixed by the lengths of the
boundaries.
e The shape of the surface can be described by [, 0
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Pants decomposition

e In general, the moduli space of Riemann surfaces (~space of the shape of
the surfaces) can be parametrized by the lengths and twist angles in a
pants decomposition.

11 vertex

propagator

e This fact implies that we may be able to construct an SFT with

3
S=0KP+ 1028



An SFT based on the pants decomposition?

11 vertex

propagator

S=0K®d + P>

e This action does not work. (D'Hoker-Gross)
e One-loop one point amplitudes diverge because the pants decomposition is
nOIZfl{hlun.
//“(77 VV;N\\\ / ‘\\\ ’/ \\\ :\\
L ) (o)) [e)) A=oox [~

A= [dlda(BV) .
e Most of the amplitudes diverge in the same way.
3g-3+n

A= f H (dlsd05)<BV1V:n>: f <BV1Vn)

Tg.n

I
3
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Modular invariance

( \ [ \ c/ \ o« —_ . \\
[« \ () [(«x)) A=o0ox [

e These different pants decompositions are transformed to each other by
diffeomorphisms not isotopic to identity.
e The group of such diffeomorphisms is called the mapping class group.
e The amplitudes are invariant under the action of the group (modular
invariance).
A = f (BVi-+Vi) = o0 x /F (BV1-+-Vi)

g,n

F =Tg,n/Modg,»n: fundamental domain

7;,'<n

12/28



2. Mirzakhani recursion




2. Mirzakhani recursion

e The volume of the moduli space of Riemann surfaces with genus g and n
boundaries whose lengths are L1, -+, L,, is given by

3g 3+n lsdlsdé’g
Van(lnw L) = [ T1 [5G ]

e Integrating over 0 <[5 < oo, the integral diverges.

| —\ / / /2” didg
g OX | o

e We should integrate over the fundamental domain F, which is very

complicated in general.
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McShane identity (g=n=1,L =0)

N (N
) e/

e McShane identity (1998): for f(I) = —2;

1+el

1= > f(rY

~veMed; 1

e Vi1 can be calculated multiplying this by [ % (Mirzakhani)

ldldo ldido
Va© = [ 5 [[Rie05e
Y

v ld(y-D)d(y-0) _ldlde
ff;fwni% -;/ﬁm)—%

didol 2 w2

2r 1+el 6

14 /28



Mirzakhani-McShane identity

e Mirzakhani obtained identities for general g,n with 2g —2 +n > 0.

n
Ly = Z D5 + Z Z (Tt,r,0, +Dryr,1,)

{v,6}eC a=2v€C,

L

Drppr = 2 (log(e% fe )— log(e_% fet ))
o L
cosh £~ + cosh £55

cosh % + cosh L’ZL’

Trrne
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Mirzakhani recursion relation

lsdlsdfs

e Multiplying the generalized McShane identity by ff I, [ =

], we get

. .
LVpn(LL) = 2 /0 'y /0 L' L Dy Vs mya (I, L, 1)

1 e o0
+5/ dL'L'/ dL"L" Dy Z Vgrma (L' L1) Vg, iy (L7, L)
Jo Jo

stable

n o0
+ Z/ dL'L' (T, p,10 + Dryn.r) Vau(L,L\L,)
a=170

e V;n+1(l,L) can be expressed by the volumes for simpler surfaces.

e One can calculate Vj, (L1,-+, L) by solving this equation.
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3. A recursion relation for the off-shell
amplitudes of closed bosonic strings




2. A recursion relation for the off-shell amplitudes of closed bosonic strings

e In string theory, the amplitudes are given by integrals over the moduli
space of Riemann surfaces

Alin / 1‘[ [dl,dbs] H[b(@l )6(30,)] Vis Vi Y 2gum ot

e |t is conceivable that we can derive a recursion relation for these
amplitudes in the same way as we did for the recursion relation for

Vo (L1, Ln )_fn[ldl dH]
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The recursion relation

' lsdlydfs
generalized McShane identity H - X

recursion relation for

= Z Dryi; + Z Z (Tt,L,1, + Dryna,) ————> B lodldo
{v,6}eCy a=2v€Cq, Vy,n(Ll,"' <,Ln) 7/ H —

/Hdl o, <H[b (01,)0(8,)] Vi, - >

recursion relation for

Al = /fHdzda <H [6(01)6(05,)] Vi, - >

LiAp e = LiGh126, 000,

1 ’ g
+§D1‘J I Gl [ 91 {n+l + Z I]Iz AlTL AI'Te
771

— 1) e feene
n N
I IaJ Ilyedg-T,
+ E T GL]IAg.77171" "
a=2
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The recursion relation

971 o _/ H[dl de] )b(895)]Ba1"'Banvil"'vin>

(1 Qg =+

Foe = 04—, (01,) J27 et 7 E") g, = —

LlAél’;;I" = LlGIl 1269,05n,2
| 275 'lyeI,, E1,T. Iz, I'T;

+§D YUG G |A q Ln+1 +Z mAgl,]mAgz "2
+3 e Thld G Al Lo

TS = Ty p,1,(Bay Bay Bag VAVEVY)

phills Dr,1ons (Bay Bay Ba, VAV2V )

Gh]'z (97?1'971?2)(_1)”%2 6(L1 - L2)501,—02 )
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4. The Fokker-Planck formalism




3. The Fokker-Planck formalism

Iy 1, I I
LAl T = LGP0,
1 D ’ g
LJ'J II' Iz, Z IlIz I, I'T,
+§D VGG Ag—l,n+ln + nl Ny — 1)[AQJ 1n1At]z ﬁz

n
I 1.J ECT AR
+ E eI G AT

a=2
e One can derive the amplitudes A;};;'I" perturbatively solving this equation.

e This equation can be regarded as the Schwinger-Dyson equation of the
string theory.
e We may be able to construct an SFT from this equation.

e This equation can be turned into an SFT via the method developed by
Kawai-NI, Jevicki-Rodrigues,
Ikehara-Kawai-Mogami-Nakayama-Sasakura-NI , lkehara, .....

20/28



The Fokker-Planck formalism

® Euclidean field theory

 [Ldgle g (21)p(n)
(9lan)-d(en)} = T Tdé]e-5141

® Fokker-Planck formalism

(6(@1)~d(wn)) = lim (0] FEP $(a1)d(2n)[0)

[7(2), 6(¥)] = 6(z ~y), [#, 7] = [$,4] =0
(0l () = #()[0) = 0
I:IFP = - / dx (fr(z) + éifx)

(9)) #@)
® path integral

_ [ldndgle”"FP (0, 1)-¢(0,7,)
(p(z1)¢(zn)) = f[dﬂd(ﬁ]e*IFP

]szfwdT[—fmeraT¢+HFP:|
0]
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The Fokker-Planck formalism for closed bosonic strings

e Following the procedure, we obtain the FP formalism
e Correlation functions

I Inwc _ S~ 2g-2+4n ,I1-T
(@1 )= 3 gl AL
g=0

e The FP formalism
<<¢11_._¢1,,L ) = lim ({()|677H$11-'~$I7L\()>>

[7?1703}(] = 51K
[, 7x] =[67,6%]=0
(ol¢" = #sl0) =0
~ ’ ~
H = -LajapGl Tl + L 4,
1 7 el ol
—EgSDH D GrngnGrigr 3™ ¢ #1
I -~ ”
—gSTII ! GI//K//(/)K frllﬁ'[

e The Hamiltonian consists of kinetic terms and three string interaction terms.
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e It is possible to (formally) define the action S[¢].

o-S[9] . A
TTagje—s1 - Am (0™ 8(¢ =)o)

[1dg)e T gh . g
[Tt
= Jim (0™ [ [dg16(p - $)91 6" o)

= lim (0l ™7 1.4 |0)

T—>00

e One can calculate S[¢’] perturbatively.
1 k5 1y ” ’
S8 = 5Ge'e”" - L AL LG Grrnd” 67 ¢

+ %TII'I,,GII]//GI.]Qb'] TP O(gf)
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S[(ybl] :¢2+gs¢3+gs¢+"'

D’Hoker-Gross \ N

(OO—l)X N 4

o S[¢'] is divergent and ill defined.
e The 1 loop 1 point amplitude

e S[¢'] includes infinitely many divergent counterterms.

24 /28



5. BRST invariant formulation




BRST symmetry on the worldsheet

e We need the worldsheet BRST symmetry to define the physical states with
positive norm.

Qlphys.) = 0
[~ D+l
e In order to discuss this symmetry, we change the notation
lp™(L)) = Zdy\@f)
Ima(L)) = le)fn
H = fodeL[(RWO(L))\M(L)) —(Rlma (L))o (L))]
~g. [ dL1dLadLa(Tiy g0, 1BLay B2, B2, 6% (L1)hilmas (L2))almag (La))s

1 P «@ e
-39 [ dLidLadLa(Dryry 1|Bly, By BY,16% (Li))il6"2 (La))almag (La))s

e The BRST transformation

Selo™ (L)) = eP-Qlé™ (L)) de|mi (L)) = €Qlmi (L)) - ebg POL|m_ (L))
Scl¢™(L)) = €Qlo™ (L)) = ebg POL|¢* (L))  Se|m—(L)) = eP-Qlm_(L))
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H is not BRST invariant

e M is not BRST invariant.

o If it were, FP formalism would be modular invariant
e Let QQ be the generator of the BRST transformation

68 =[Q, A1 = [~ dL((RIQ®(L))Ima(L)) + (RIT*(L))Q Ira (L))

- /O“’ dL(R|T*(L))|wa (L))
1Q%(L)) = [Q,|T(L))]

e The amplitudes are invariant, because |Q%(L)),|T*(L)) are “null
quantities” satisfying

[t o1 |17 () =0

[t 01 |10 (E)) =0
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BRST invariant formulation

e We can modify the Hamiltonian by introducing the auxiliary fields
A2 (L)), IAT (L)) so that it becomes BRST invariant and still yields the
correct amplitudes.

f- e+ [T ar ((RIQ™ (LA (D)) + (RIT* (L)AL (D))
68 = [ dL ((RIQ™(L))lma (L)) + (RIT* (L)Q Ima (1))])

e The action

B = _[Omdr[ffomdL(R\ﬂa(‘r,L))%M)“(T,L))+H(T)
e [ AL ((rQ” (r LIRS 1)+ (RIT™ (LT (1) |

e This action is invariant under the BRST transformation.
e |t consists of kinetic terms and three string interaction terms.
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6. Conclusions




5. Conclusions

&= & 9 .
B = fo dT[—fO dL(Rima (7, L)) 516" (7, L)) + H(r)

+ [0°° dL ((RIQ (7, L))AZ (1, L)) + (RIT* (1, L)AL (7, L)) ]

e We have constructed an SFT for closed bosonic strings based on the pants
decomposition via the Fokker-Planck formalism.

e The action consists of kinetic terms and three string interaction terms.
e It is manifestly invariant under a nilpotent BRST transformation and we can
define the physical states using it.

e It is possible to construct a similar SFT using Strebel differentials and
combinatorial moduli space. (N.I. PTEP 2024 (2024) 7, 073B02)

e The technique here can be used to construct classical solutions of SFT .
Firat-Valdes-Meller

e SFT for superstrings?
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