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Light-cone gauge SFT for closed strings

@ String field
® [27F,p", X" (0)]

e Action

propagator vertex
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On-shell amplitudes for bosonic strings

’% ARC = /l;ldtKFLC (t)

On-shell amplitudes coincide with the conformal gauge ones.

qcont. _ /HdmaFconf. ()
a

@ tx can be chosen to be the moduli parameters
° FLC (t) — Fconf. (t)

@ The integral itself is divergent.
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On-shell amplitudes for superstrings

. _
% j A= M /HdtKFLC(t,aL,aR,)

opor’ K
For superstrings, on-shell amplitudes

o with (NS,NS) external lines

@ even spin structure

coincide with the conformal gauge ones.

o The integral itself is divergent because of the contact term divergences.

@ This can be remedied by dimensional regularization.




On-shell amplitudes for superstrings

In this talk, | would like to show that the above results can be generalized to the

odd spin structure case. (with (NS,NS) externall lines)

We would like to show
@ The LC amplitudes for odd spin structures can be recast into a conformal
gauge expression.

@ Although the expression yields a divergent integral, we can make it
well-defined by dimensional regularization.

e Here we assume that there are no problems of mass renormalization or vacuum

shift.
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LC gauge vs. conformal gauge

§1 LC gauge vs. conformal gauge

For bosonic strings €D
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LC gauge vs. conformal gauge

FLC (t) — Fconf. (t)

Fconf. (t) — / [dX“dbdc] e_scoan
X ]}_([ |:}{ bz +€K}{ f;bgz} 1:[ [CCVDDF (Zr, 2, )}

e VPDPF isa (1,1) matter primary
@ e = +1

@ This can be shown by just performing the integrations over X* and b, c in

Fconf. (t)
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LC gauge vs. conformal gauge

Bosonic strings

/ [dXi} e—si HVTDDF (Zm Z’r)
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LC gauge vs. conformal gauge

LC gauge amplitudes for type Il strings

ALC: Z /HdtKFLC(t,aL,aR)

ay,, R K

@ ar,ag : spin structures of left and right moving fermions @D

@ Supercurrent for the LC variables T'5¢ (z) are inserted at the interaction

points.

ds* = Dpdpdzdz

K

— /HdtK

ds? = 2§.zdzdz
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LC gauge vs. conformal gauge

LC gauge amplitudes for critical type Il strings
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LC gauge vs. conformal gauge

FC (t, a1, agr) = F" (t, a,, ar)

Fconf. (t, aL, OZR)

/HdtK/ [dX " dy* dip" dbdedBdr ], _ o5
K

. 29— 2+N
><11:[ |:y{C’K b.. JrEK]{ ?ﬁ zz:| [X(ZI)X(;ZI)}

N
H [cce N DDF(Z Z )]

e VPPFisa (4,1) matter primary in the (NS,NS) sector.

@ X (z)=

{c@f — Ty + ﬁ@bneQé + %b (267762@ + 7]862‘75)] (z)

@ The PCO'’s are inserted at the interaction points of the LC diagram
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LC gauge vs. conformal gauge

Fconf A FLC

Proof involves two steps

1. X (2) = —e?TEC (2) + A (2) One can show that A (2) does not contribute to
the correlation function

conf

/HdtK/ [dX* " dg* dbdedfy ], _ o
zz

dz dz 2g—2+N - o
X 1;[ |;7§;K Bipbzz +ex ??@K gfﬁb22:| H [e Te"~ (21) e*Tp (ZI)]

=1
N
H {cce DDF(ZT,Z )]

@ One can find a nilpotent fermionic charge Q, s.t. all the insertions are Q

invariant and A (») = {Q,O(z)}
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LC gauge vs. conformal gauge

Fconf A FLC

2. Integrating over X+, 4* and ghosts, we get Feorf: = FLC ]

N
- _gt _ _
/[dxidwidzpi]e SETI VPP (20, 20) ~ Zy1Z2,2VEC(2,.2,)
r=1

(b, c part) ~ (in)*lefr[/% Gzz]

_1 1 R 29— 2+\

(B, part) ~ (Zwi) 6§F[P: Gzz] ‘a P(21)|

peont.  —4Tlpigzz] / [dXidwidlzi] e,SLc [x,01,51]
9zz
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_  pLc
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Odd spin structure

§2 Odd spin structure

@ In order for the above procedure to be well-defined we need

B det’ (7922(9265) 7% N
Zyx = <m> Y[ar] (0) 9[ar] (0)" # 0

@ The theta function satisfies

9] (=¢) = (=1 9]a] (¢)

@ « is called even or odd, depending on whether 4@ - @" is an even or odd

integer.

When the spin structure oy, is odd, for example, ¥[ar] (0) = 0 and we are in

trouble.




Odd spin structure

Odd spin structures

(ST

Zys = (M) o] (0) 9ar] (0)*

det ImQ [ d?z./g
2g—2+N - N _
[lapane=er TT [ef o e? @] T [ (20 e7? (20)]
I=1 r=1
Ly X N . 29=2+N 3
= (Zu‘!i) e2lles 922] H e~ ReNoo H |82p(z1)) 2.
r=1 I=1

@ vjar] (0) = 0 implies that 1*, 3, possess zero modes
hay, (2), 0phay, (2),(8p) " hay, (2) where

hay (2) = ¢Z 90 o] (0) wu (2)

@ The conformal gauge expression involves a combination0 x oo and is

ill-defined.
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Amplitudes for odd spin structures

§3 Amplitudes for odd spin structures

o In order to deal with the problem, we need to insert ¥, 8 (v),8 (3) to soak

up the zero modes.

@ This can be achieved in a BRST invariant way by changing the pictures of

some of the external lines.

o In the following, we consider the case when oy, is odd and ag is even
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Amplitudes for odd spin structures

Amplitudes for odd spin structures

The conformal gauge

Fconf. (t7QL7aR) —

expression is taken to be

tot
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Amplitudes for odd spin structures

Fconf A FLC

Proof involves two steps

1. One can show that X (z;) can be replaced by —e®TEC (z;) and V") by the
first term

tot
Feorf (¢t ap,ag) = /[dX“d«/;“dbdchd'y]h e~ 5
9zz
69—64+2N . g - dz 5
I [, e +ex f,  aoves TT[#TEC () T (o)
K=1 I
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Amplitudes for odd spin structures
Fconf .

— FLC

Integrating over X+, 1% and ghosts, we get oo™
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Amplitudes for odd spin structures

Contact term divergences

@ The amplitude

A = Z /HdtKFLC(t,OéL,OzR)
K

aL, R
a1,,aR K

is ill-defined because of the contact term divergences.

T—-0

[ dTdo 00,
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Amplitudes for odd spin structures

Dimensional regularization

T—0

6 — 09

@ The divergences can be regularized by dimensional regularization.
@ By considering the theory in a linear dilaton background ® = —iQX?!, with a
real constant @, we can make the amplitudes well-defined for Q2 > 10:

1(2

NP

/ X" dytap’ ] . e‘SLC [xtvto]
29— 24N

3 N
< 11 (\a%(zz)]’fT£C<ZI>T£C<21>)Hv}c

I=1 r=1

FLe (t,anL,ar) ~ e



Amplitudes for odd spin structures

Dimensional regularization

e We can prove FC (t, a1, ar) = F™ (¢, ar, aR)
7Stot

Feorl (¢ ap,ar) = / [dX“dz/J“dbdcd,Bd'y}gA? e
zz

6g—6+2N

b d dz
X H % Z b.: +ex = =bzz
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r=3

23 /20



Amplitudes for odd spin structures

Dimensional regularization

@ The longitudinal part is a super conformal field theory with ¢ = 3 4+ 12Q? so

that the total central charge vanishes.

@ The LC amplitudes A™C (Q?) are well-defined for @ > 10 and can be

defined as analytic functions of Q2.

o A (Q?) can be made well-defined by avoiding the spurious singularities

using Sen-Witten prescription for Q% < 10 and
ALC (QQ) — Aconf. (QZ)

e limg_,0 A (Q?) is well-defined when there are no infrared divergences.



Outlook

§4 Outlook

@ We have shown that the odd spin structure contributions to the light-cone
gauge amplitudes correspond to the conformal gauge expression using the

vertex operators V (=2—1 1 (0.=1),

@ The contact term divergences can be regularized by dimensional

regularization.

@ The wrong picture vertex operators V(=2~1 17 (0.=1) 2



Outlook

Vacuum shift and mass renormalization

@ Mass renormalization may be dealt with by making the external line off-shell.

@ There exist no light-cone tadpole diagrams but there are divergences

associated with them.

@ We may have to deal with it in the same way as the UV divergences in usual

field theory.
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Outlook

Anomaly factor @z

N 29—2+N

I(p,92%] % —ReNjy ! A -5 1
H Y(97,2,) e H (922,)77 |0%p(z1)]
r=1 I=1

e g2 Arakelov metric on the surface

o r=1,..., N label the punctures

@ I =1,...,2g — 2+ N label the interaction points, where dp(z) = 0.
o Nig = -k (p(zrn) = limasz, (p(2) — pf In (2 = Z,)))

r-th external line

Zr(r)
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Outlook

Spin structure @z

@ When z is moved around the cycles once, left moving fermion ¢ (z)
transforms as

$(2) — eOLig(z) (A, cycle)

6(2) — eOLig(z) (By cycle)

with of ;. of ; =0,4. We label the spin structure by the vector ar..

@ ag is defined in the same way.

20/20



	LC gauge vs. conformal gauge
	Odd spin structure
	Amplitudes for odd spin structures
	Outlook

